Oncotarget

Research Papers:

Pentraxin 3 deficiency enhances features of chronic rejection in a mouse orthotopic lung transplantation model

Mitsuteru Yoshida _, Hisashi Oishi, Tereza Martinu, David M. Hwang, Hiromitsu Takizawa, Junichi Sugihara, Trevor D. McKee, Xiaohui Bai, Zehong Guana, Christina Lua, Hae-Ra Cho, Stephen Juvet, Marcelo Cypel, Shaf Keshavjee, Mingyao Liu

PDF |  HTML  |  Supplementary Files  |  Order a Reprint

Oncotarget. 2018; 9:8489-8501. https://doi.org/10.18632/oncotarget.23902

Metrics: PDF 149 views  |   HTML 226 views  |   ?  


Abstract

Mitsuteru Yoshida1, Hisashi Oishi1, Tereza Martinu1,2,3, David M. Hwang1,4, Hiromitsu Takizawa1, Junichi Sugihara1, Trevor D. McKee1, Xiaohui Bai1, Zehong Guana1, Christina Lua1, Hae-Ra Cho1, Stephen Juvet1,2,3, Marcelo Cypel1,2,5, Shaf Keshavjee1,2,5 and Mingyao Liu1,2,3,5

1Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada

2Institute of Medical Science, University Health Network, Toronto, Ontario, Canada

3Department of Medicine, University Health Network, Toronto, Ontario, Canada

4Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada

5Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada

Correspondence to:

Mingyao Liu, email: mingyao.liu@utoronto.ca

Keywords: innate immunity; Micro-CT; bronchiolitis obliterans; lymphatic aggregates; Th1/Th2 response

Received: July 03, 2017     Accepted: November 12, 2017     Published: January 03, 2018

ABSTRACT

Chronic lung allograft dysfunction (CLAD) is a serious complication after lung transplantation and thought to represent chronic rejection. Increased expression of Pentraxin 3 (PTX3), an acute phase protein, was associated with worse outcome in lung transplant patients. To determine the role of recipient PTX3 in development of chronic rejection, we used a minor alloantigen-mismatched murine orthotopic single lung transplant model. Male C57BL/10 mice were used as donors. Male PTX3 knockout (KO) mice and their wild type (WT) littermates on 129/SvEv/C57BL6/J background were used as recipients. In KO recipients, 7/13 grafted lungs were consolidated without volume recovery on CT scan, while only 2/9 WT mice showed similar graft consolidation. For grafts where lung volume could be reliably analyzed by CT scan, the lung volume recovery was significantly reduced in KO mice compared to WT. Interstitial inflammation, parenchymal fibrosis and bronchiolitis obliterans scores were significantly higher in KO mice. Presence of myofibroblasts and lymphoid aggregation was significantly enhanced in the grafts of PTX3 KO recipients. Recipient PTX3 deficiency enhanced chronic rejection-like lesions by promoting a fibrotic process in the airways and lung parenchyma. The underlying mechanisms and potential protective role of exogenous PTX3 as a therapy should be further explored.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 23902