Oncotarget

Research Papers:

The hypoxia-responsive lncRNA NDRG-OT1 promotes NDRG1 degradation via ubiquitin-mediated proteolysis in breast cancer cells

Hsin-Chen Lin, Ching-Ching Yeh, Lo-Yun Chao, Mong-Hsun Tsai, Hung-Hsin Chen, Eric Y. Chuang and Liang-Chuan Lai _

PDF  |  HTML  |  How to cite

Oncotarget. 2018; 9:10470-10482. https://doi.org/10.18632/oncotarget.23732

Metrics: PDF 1794 views  |   HTML 2346 views  |   ?  


Abstract

Hsin-Chen Lin1, Ching-Ching Yeh1, Lo-Yun Chao2, Mong-Hsun Tsai2,3, Hung-Hsin Chen3, Eric Y. Chuang3,4 and Liang-Chuan Lai1,3

1Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan

2Institute of Biotechnology, National Taiwan University, Taipei, Taiwan

3Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan

4Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan

Correspondence to:

Liang-Chuan Lai, email: [email protected]

Keywords: hypoxia; lncRNA; NDRG1-OT1; NDRG1; ubiquitination

Received: November 23, 2016     Accepted: December 18, 2017     Published: December 28, 2017

ABSTRACT

Hypoxia can lead to solid tumor aggressiveness by driving multiple signaling pathways. Long non-coding RNAs respond to several extrinsic stimuli, causing changes in cancer cells by participating in multiple steps of gene expression. However, genomic profiling of long non-coding RNAs regulated by oxygen in breast cancer remained unclear. Therefore, the aims of this study were to identify oxygen-responsive long non-coding RNAs in breast cancer cells, and to delineate their regulatory mechanisms. The expression profiling of long non-coding RNAs in breast cancer cells growing under normoxic, hypoxic, and re-oxygenated conditions was examined using next-generation sequencing technology. Four hundred and seventy-two lncRNAs oxygen-responsive lncRNAs were identified. After examining the top three differentially expressed lncRNAs in hypoxia, we selected N-Myc Downstream Regulated Gene 1-Overlapping 1 (NDRG1-OT1) for further study, especially the most responsive isoform, NDRG1-OT1_v4. We overexpressed NDRG1-OT1_v4 under normoxia and performed microarray analysis to identify 108 NDRG1-OT1_v4 regulated genes and their functions. Among these genes, we found that both NDRG1 mRNA expression and NDRG1 protein levels were inhibited by NDRG1-OT1_v4. Finally, we used co-immunoprecipitation to show that NDRG1-OT1_v4 destabilizes NDRG1 by promoting ubiquitin-mediated proteolysis. Our findings reveal a new type of epigenetic regulation of NDRG1 by NDRG1-OT1_v4 in breast cancer cells.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 23732