Oncotarget

Research Papers:

Targeting G-protein coupled receptor-related signaling pathway in a murine xenograft model of appendiceal pseudomyxoma peritonei

Ashok K. Dilly, Brendon D. Honick, Yong J. Lee, Zong S. Guo, Herbert J. Zeh, David L. Bartlett and Haroon A. Choudry _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:106888-106900. https://doi.org/10.18632/oncotarget.22455

Metrics: PDF 1700 views  |   HTML 2545 views  |   ?  


Abstract

Ashok K. Dilly1, Brendon D. Honick1, Yong J. Lee1,2, Zong S. Guo1, Herbert J. Zeh1, David L. Bartlett1 and Haroon A. Choudry1

1Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh PA 15232, USA

2Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh PA 15232, USA

Correspondence to:

Haroon A. Choudry, email: [email protected]

Keywords: MUC2; xenograft; pseudomyxoma peritonei; COX-2; CREB

Received: August 31, 2017     Accepted: October 17, 2017     Published: November 06, 2017

ABSTRACT

Cancer cells aberrantly express mucins to enhance their survival. Relative chemoresistance of appendiceal pseudomyxoma peritonei (PMP) is attributed to abundant extracellular mucin 2 (MUC2) protein production. We hypothesized that simultaneous MUC2 inhibition and apoptosis induction would be effective against mucinous tumors. In vitro studies were conducted using LS174T cells (MUC2-secreting human colorectal cancer cells), PMP explant tissue, and epithelial organoid cultures (colonoids) derived from mucinous appendix cancers. In vivo studies were conducted using murine intraperitoneal patient-derived xenograft model of PMP. We found COX-2 over-expression in PMP explant tissue, which is known to activate G-protein coupled EP4/cAMP/PKA/CREB signaling pathway. MUC2 expression was reduced in vitro by small molecule inhibitors targeting EP4/PKA/CREB molecules and celecoxib (COX-2 inhibitor), and this was mediated by reduced CREB transcription factor binding to the MUC2 promoter. While celecoxib (5–40 μM) reduced MUC2 expression in vitro in a dose-dependent fashion, only high-dose celecoxib (≥ 20 μM) decreased cell viability and induced apoptosis. Chronic oral administration of celecoxib decreased mucinous tumor growth in our in vivo PMP model via a combination of MUC2 inhibition and induction of apoptosis. We provide a preclinical rationale for using drugs that simultaneously inhibit MUC2 production and induce apoptosis to treat patients with PMP.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 22455