Oncotarget

Research Papers:

Anti-leukemia activity of NSC-743380 in SULT1A1-expressing acute myeloid leukemia cells is associated with inhibitions of cFLIP expression and PI3K/AKT/mTOR activities

Xiao Huang, Mengru Cao, Shuhong Wu, Li Wang, Jing Hu, Reza J. Mehran, Jack A. Roth, Stephen G. Swisher, Rui-Yu Wang, Hagop M. Kantarjian, Michael Andreeff, Xiaoping Sun and Bingliang Fang _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:102150-102160. https://doi.org/10.18632/oncotarget.22235

Metrics: PDF 1301 views  |   HTML 2273 views  |   ?  


Abstract

Xiao Huang1,4, Mengru Cao1, Shuhong Wu1, Li Wang1, Jing Hu1, Reza J. Mehran1, Jack A. Roth1, Stephen G. Swisher1, Rui-Yu Wang2, Hagop M. Kantarjian2, Michael Andreeff2, Xiaoping Sun3 and Bingliang Fang1

1Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

2Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

3Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

4Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China

Correspondence to:

Bingliang Fang, email: [email protected]

Keywords: cancer; drug development; biomarker; sulfotransferase; SULT1A1

Received: July 03, 2017    Accepted: September 30, 2017    Published: November 01, 2017

ABSTRACT

Our recent study showed that acute myeloid leukemia (AML) cells expressing SULT1A1 are highly sensitive to NSC-743380, a small molecule that inhibits STAT3 activity and induces SULT1A1-dependent apoptosis of various cancer cell lines. In this study, we characterized the molecular mechanisms of NSC-743380–mediated anti-leukemia activity in AML cell lines and antileukemia activity of NSC-743380 in patient-derived primary leukemia cells from AML patients. Our results showed that treatment with NSC-743380 triggered robust apoptosis in SULT1A1-positive AML cells. Treatment with NSC-743380 did not increase intracellular reactive oxygen species or change of STAT3 activity in AML cells, but did dramatically and rapidly decrease cFLIP expression. Proteomic analysis with reverse phase protein microarray revealed that treatment of U937 and THP-1 AML cells with NSC-743380 led to drastic and time-dependent suppression of phosphorylation of several key nodes in the PI3K/AKT/mTOR pathway, including AKT and mTOR. Moreover, primary AML cells expressed SULT1A1 were highly sensitive to treatment with NSC-743380, which was not affected by co-culture with bone marrow mesenchymal stem cells. Thus, our results provide proof-of-concept evidence that AML cells expressing SULT1A1 can be targeted by small molecules that induce apoptosis through inhibiting the expression or activities of multiple targets.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 22235