Oncotarget

Research Papers:

PARP inhibition causes premature loss of cohesion in cancer cells

Eva Kukolj, Tanja Kaufmann, Amalie E. Dick, Robert Zeillinger, Daniel W. Gerlich and Dea Slade _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:103931-103951. https://doi.org/10.18632/oncotarget.21879

Metrics: PDF 2353 views  |   HTML 4547 views  |   ?  


Abstract

Eva Kukolj1, Tanja Kaufmann1, Amalie E. Dick2, Robert Zeillinger3, Daniel W. Gerlich2 and Dea Slade1

1Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria

2Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria

3Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria

Correspondence to:

Dea Slade, email: [email protected]

Keywords: PARP inhibitors, mitosis, cohesion, PARP entrapment, live-cell imaging

Received: June 22, 2017     Accepted: September 22, 2017     Published: October 16, 2017

ABSTRACT

Poly(ADP-ribose) polymerases (PARPs) regulate various aspects of cellular function including mitotic progression. Although PARP inhibitors have been undergoing various clinical trials and the PARP1/2 inhibitor olaparib was approved as monotherapy for BRCA-mutated ovarian cancer, their mode of action in killing tumour cells is not fully understood. We investigated the effect of PARP inhibition on mitosis in cancerous (cervical, ovary, breast and osteosarcoma) and non-cancerous cells by live-cell imaging. The clinically relevant inhibitor olaparib induced strong perturbations in mitosis, including problems with chromosome alignment at the metaphase plate, anaphase delay, and premature loss of cohesion (cohesion fatigue) after a prolonged metaphase arrest, resulting in sister chromatid scattering. PARP1 and PARP2 depletion suppressed the phenotype while PARP2 overexpression enhanced it, suggesting that olaparib-bound PARP1 and PARP2 rather than the lack of catalytic activity causes this phenotype. Olaparib-induced mitotic chromatid scattering was observed in various cancer cell lines with increased protein levels of PARP1 and PARP2, but not in non-cancer or cancer cell lines that expressed lower levels of PARP1 or PARP2. Interestingly, the sister chromatid scattering phenotype occurred only when olaparib was added during the S-phase preceding mitosis, suggesting that PARP1 and PARP2 entrapment at replication forks impairs sister chromatid cohesion. Clinically relevant DNA-damaging agents that impair replication progression such as topoisomerase inhibitors and cisplatin were also found to induce sister chromatid scattering and metaphase plate alignment problems, suggesting that these mitotic phenotypes are a common outcome of replication perturbation.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 21879