Oncotarget

Research Papers:

TRPM8 is required for survival and radioresistance of glioblastoma cells

Dominik Klumpp, Stephanie C. Frank, Lukas Klumpp, Efe C. Sezgin, Marita Eckert, Lena Edalat, Martin Bastmeyer, Daniel Zips, Peter Ruth and Stephan M. Huber _

PDF  |  HTML  |  Supplementary Files  |  Order a Reprint

Oncotarget. 2017; 8:95896-95913. https://doi.org/10.18632/oncotarget.21436

Metrics: PDF 491 views  |   HTML 896 views  |   ?  


Abstract

Dominik Klumpp1, Stephanie C. Frank2,3, Lukas Klumpp1,4,5, Efe C. Sezgin1, Marita Eckert1, Lena Edalat1,6, Martin Bastmeyer2,3, Daniel Zips1, Peter Ruth6 and Stephan M. Huber1

1Department of Radiation Oncology, University of Tübingen, Tübingen, Germany

2Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

3Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany

4Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany

5University of Tübingen, Tübingen, Germany

6Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany

Correspondence to:

Stephan M. Huber, email: stephan.huber@uni-tuebingen.de

Keywords: glioblastoma; radioresistance; TRPM8 channels; Ca2+ signaling; cell migration

Received: July 26, 2017     Accepted: August 25, 2017     Published: September 30, 2017

ABSTRACT

TRPM8 is a Ca2+-permeable nonselective cation channel belonging to the melastatin sub-group of the transient receptor potential (TRP) family. TRPM8 is aberrantly overexpressed in a variety of tumor entities including glioblastoma multiforme where it reportedly contributes to tumor invasion. The present study aimed to disclose further functions of TRPM8 in glioma biology in particular upon cell injury by ionizing radiation. To this end, TCGA data base was queried to expose the TRPM8 mRNA abundance in human glioblastoma specimens and immunoblotting was performed to analyze the TRPM8 protein abundance in primary cultures of human glioblastoma. Moreover, human glioblastoma cell lines were irradiated with 6 MV photons and TRPM8 channels were targeted pharmacologically or by RNA interference. TRPM8 abundance, Ca2+ signaling and resulting K+ channel activity, chemotaxis, cell migration, clonogenic survival, DNA repair, apoptotic cell death, and cell cycle control were determined by qRT-PCR, fura-2 Ca2+ imaging, patch-clamp recording, transfilter migration assay, wound healing assay, colony formation assay, immunohistology, flow cytometry, and immunoblotting. As a result, human glioblastoma upregulates TRPM8 channels to variable extent. TRPM8 inhibition or knockdown slowed down cell migration and chemotaxis, attenuated DNA repair and clonogenic survival, triggered apoptotic cell death, impaired cell cycle and radiosensitized glioblastoma cells. Mechanistically, ionizing radiation activated and upregulated TRPM8-mediated Ca2+ signaling that interfered with cell cycle control probably via CaMKII, cdc25C and cdc2. Combined, our data suggest that TRPM8 channels contribute to spreading, survival and radioresistance of human glioblastoma and, therefore, might represent a promising target in future anti-glioblastoma therapy.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 21436