Oncotarget

Meta-Analysis:

Genetic polymorphisms of non-coding RNAs associated with increased head and neck cancer susceptibility: a systematic review and meta-analysis

Weiyi Pan, Chenzhou Wu, Zhifei Su, Zexi Duan, Longjiang Li, Fanglin Mi _ and Chunjie Li

PDF  |  HTML  |  Supplementary Files  |  Order a Reprint

Oncotarget. 2017; 8:62508-62523. https://doi.org/10.18632/oncotarget.20096

Metrics: PDF 505 views  |   HTML 2491 views  |   ?  


Abstract

Weiyi Pan1,*, Chenzhou Wu1,2,*, Zhifei Su1, Zexi Duan1, Longjiang Li1,2, Fanglin Mi3 and Chunjie Li1,2

1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China

2Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China

3Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China

*Co-First authors

Correspondence to:

Fanglin Mi, email: 1498092988@qq.com

Chunjie Li, email: lichunjie@scu.edu.cn

Keywords: genetic polymorphisms, non-coding RNAs, head and neck cancer, cancer susceptibility, systematic review

Received: May 01, 2017     Accepted: July 26, 2017     Published: August 09, 2017

ABSTRACT

Genetic polymorphisms, including single nucleotide polymorphisms (SNP) and nucleotide repeat expansions, can occur in regions that transcribe non-coding RNAs (ncRNA), such as, but not limited to, micro RNA and long non-coding RNA. An association between genetic polymorphisms of ncRNA and increasing head and neck cancer (HNC) risk has been identified by several studies. Therefore, the aim of this systematic review is to consolidate existing findings to clarify this association. Four electronic databases, such as MEDLINE, EMBASE, Chinese BioMedical Literature Database, and China National Knowledge Infrastructure, were utilised. Inclusion of studies and data extraction were accomplished in duplicate. A total of 42 eligible studies were included, involving 28,527 cases and 37,151 controls. Meta-analysis, sensitivity analysis and publication bias detection were performed. Among the eligible studies, 102 SNPs were investigated, and 21 of them were considered eligible for meta-analysis. Our analysis revealed that HOTAIR rs920778, uc003opf.1 rs11752942, and miR-196a2 rs11614913 were related to HNC susceptibility, while let-7 rs10877887, miR-124-1rs531564, and miR-608 rs4919510 were considered as protective factors. In conclusion, our results showed the extreme importance of an up-to-date comprehensive meta-analysis encompassing the most recent findings to obtain a relevant and reliable framework to understand the relationship between ncRNA SNPs and HNC susceptibility.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 20096