Oncotarget

Research Papers:

Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine

Kelli L. Goss, Stacia L. Koppenhafer, Kathryn M. Harmoney, William W. Terry and David J. Gordon _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:87016-87032. https://doi.org/10.18632/oncotarget.18776

Metrics: PDF 1958 views  |   HTML 3676 views  |   ?  


Abstract

Kelli L. Goss1, Stacia L. Koppenhafer1, Kathryn M. Harmoney1, William W. Terry1 and David J. Gordon1

1Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA

Correspondence to:

David J. Gordon, email: [email protected]

Keywords: Ewing sarcoma, ribonucleotide reductase, gemcitabine, CHK1, replication stress

Received: March 06, 2017    Accepted: May 22, 2017    Published: June 28, 2017

ABSTRACT

Ewing sarcoma is a bone and soft tissue sarcoma that occurs in children and young adults. The EWS-FLI1 gene fusion is the driver mutation in most Ewing sarcoma tumors and functions, in part, as an aberrant transcription factor. We recently identified that Ewing sarcoma cells are sensitive to inhibition of ribonucleotide reductase (RNR), which catalyzes the formation of deoxyribonucleotides from ribonucleotides. In this report, we show that Ewing sarcoma cells are sensitive to treatment with clofarabine, which is a nucleoside analogue and allosteric inhibitor of RNR. However, clofarabine is a reversible inhibitor of RNR and we found that the effect of clofarabine is limited when using a short (6-hour) drug treatment. Gemcitabine, on the other hand, is an irreversible inhibitor of the RRM1 subunit of RNR and this drug induces apoptosis in Ewing sarcoma cells when used in both 6-hour and longer drug treatments. Treatment of Ewing sarcoma cells with gemcitabine also results in activation of checkpoint kinase 1 (CHK1), which is a critical mediator of cell survival in the setting of impaired DNA replication. Notably, inhibition of CHK1 function in Ewing sarcoma cells using a small-molecule CHK1 inhibitor, or siRNA knockdown, in combination with gemcitabine results in increased toxicity both in vitro and in vivo in a mouse xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and identify a candidate therapeutic target, and drug combination, in Ewing sarcoma.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 18776