Oncotarget

Research Papers:

Experimental study on the therapeutic effect and underlining mechanisms of positron in pancreatic cancer cells

Ying Wang, Ming Li, Rao Diao, Brian Tung, Dalong Zhang and Yaming Li _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:51652-51662. https://doi.org/10.18632/oncotarget.18366

Metrics: PDF 1090 views  |   HTML 1664 views  |   ?  


Abstract

Ying Wang1,2, Ming Li3, Rao Diao1, Brian Tung2, Dalong Zhang1 and Yaming Li1

1Department of Nuclear Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China

2Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA

3Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China

Correspondence to:

Yaming Li, email: [email protected]

Keywords: pancreatic cancer, apoptosis, positron, 18F-FDG, microPET

Received: March 14, 2017    Accepted: May 03, 2017    Published: June 05, 2017

ABSTRACT

The purpose of this study was to assess the potential therapeutic effect of positrons emitted by 18F-2-Deoxy-2-Fluoro-D-Glucose (18F-FDG) on pancreatic cancer cells and elucidate its underlying mechanisms. Pancreatic cancer cells were incubated with different radioactive concentrations of 18F-FDG and evaluated for anti-cancer properties and underlining mechanisms. In addition, three groups of tumor-bearing mice were treated with different doses of 18F-FDG weekly, the tumor growth rate was calculated, and the mice were imaged by positron emission tomography (PET) with 18F-FDG before and after treatment. The presence of apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stain and immunohistochemistry analysis. All treated groups exhibited positron-inhibited proliferation and positron-induced apoptosis compared with the control group in vitro. Further, we noted that higher treatment dose correlated with a better treatment response. In vivo, the high dose administration of 18F-FDG reduced tumor growth and prolonged the survival of treated mice compared with the control group with no change in the behavior or normal tissues of the mice. Immunohistochemical analysis and TUNEL stain showed more apoptotic cells than that in control group. The results demonstrated that positron radiation inhibited the proliferation and induced apoptosis of pancreatic cancer cells in vitro and in vivo, via an endogenous mitochondria-mediated signaling pathway.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 18366