Oncotarget

Research Papers:

Upregulation of long noncoding RNA HOXA-AS3 promotes tumor progression and predicts poor prognosis in glioma

Fan Wu, Chuanbao Zhang, Jinquan Cai, Fan Yang, Tingyu Liang, Xiaoyan Yan, Haoyuan Wang, Wen Wang, Jing Chen and Tao Jiang _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:53110-53123. https://doi.org/10.18632/oncotarget.18162

Metrics: PDF 3432 views  |   HTML 3923 views  |   ?  


Abstract

Fan Wu1,2,8, Chuanbao Zhang1,2,8, Jinquan Cai3, Fan Yang1,2,8, Tingyu Liang1,2,8, Xiaoyan Yan1,2,8, Haoyuan Wang4, Wen Wang5, Jing Chen2,8 and Tao Jiang1,2,6,7,8

1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beiijing, China

2Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beiijing, China

3Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China

4Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China

5Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China

6Center of Brain Tumor, Beijing Institute for Brain Disorders, Beiijing, China

7China National Clinical Research Center for Neurological Diseases, Beiijing, China

8Chinese Glioma Genome Atlas Network (CGGA), Beiijing, China

Correspondence to:

Tao Jiang, email: [email protected]

Jing Chen, email: [email protected]

Keywords: glioma, LncRNA, HOXA-AS3, proliferation, tumorigenesis

Received: March 31, 2017     Accepted: May 11, 2017     Published: May 24, 2017

ABSTRACT

Long noncoding RNAs (lncRNAs) have recently emerged as new potentially promising therapeutic targets in many cancers. However, their prognostic value and biological functions associated with glioma remain to be elucidated. Here, High-throughput RNAseq was performed to detect the expression profiles of lncRNAs in 325 human glioma tissues. It was shown that a novel lncRNA HOXA-AS3 was one of the most significantly upregulated lncRNAs in glioma tissues. Quantitative PCR further verified the increased expression of HOXA-AS3 in patient samples and glioma cell lines. Uni and Multivariate Cox regression analysis revealed that HOXA-AS3 was an independent prognostic factor in glioma patients. Gene set enrichment analysis indicated that the gene sets correlated with HOXA-AS3 expression were involved in cell cycle progression and E2F targets. Functionally, HOXA-AS3 silencing resulted in proliferation arrest by altering cell cycle progression and promoting cell apoptosis, and impaired cell migration in glioma cells. Furthermore, the growth-inhibiting effect of HOXA-AS3 knockdown was also demonstrated in Xenograft mouse model. Our results highlight the important role of HOXA-AS3 in glioma progression, and indicate that HOXA-AS3 may be served as a valuable prognostic biomarker for glioma.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 18162