Oncotarget

Priority Research Papers:

Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis

Regina M. Graham, John W. Thompson _ and Keith A. Webster

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2014; 5:1162-1173. https://doi.org/10.18632/oncotarget.1699

Metrics: PDF 1545 views  |   HTML 1541 views  |   ?  


Abstract

Regina M. Graham1,2, John W. Thompson1,3 and Keith A. Webster1

1 Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL

2 present address: Department of Neurological Surgery, Miller School of Medicine, University of Miami. Miami, Fl

3 present address: Department of Neurology, Miller School of Medicine, University of Miami. Miami, Fl

Correspondence:

Keith A. Webster, email:

Keywords: hypoxia, cancer, xenograft, programmed cell death, bafilomycin A1

Received: December 17, 2013 Accepted: December 29, 2013 Published: December 29, 2013

Abstract

The pro-apoptotic protein Bnip3 is induced by hypoxia and is present in the core regions of most solid tumors. Bnip3 induces programmed necrosis by an intrinsic caspase independent mitochondrial pathway. Many tumor cells have evolved pathways to evade Bnip3-mediated death attesting to the physiological relevance of the survival threat imposed by Bnip3. We have reported that acidosis can trigger the Bnip3 death pathway in hypoxic cells therefore we hypothesized that manipulation of intracellular pH by pharmacological inhibition of the vacuolar (v)ATPase proton pump, a significant pH control pathway, may activate Bnip3 and promote death of hypoxic cells within the tumor. Here we confirm that bafilomycin A1 (BafA1), a selective vATPase inhibitor, significantly increased death of breast cancer cells in a hypoxia and Bnip3-dependent manner and significantly reduced tumor growth in MCF7 and MDA-MB-231 mouse xenografts. Combined treatment of cells with BafA1 and the ERK1/2 inhibitor U0126 further augmented cell death. Combined treatment of mice containing MDA-MB-231 xenografts with BafA1 and the ERK1/2 inhibitor sorafenib was superior to either treatment alone and supported tumor regression. BafA1 and sorafenib treatments alone reduced MDA-MB-231 cell metastasis and again the combination was significantly more effective than either treatment alone and was without apparent side effects. These results present a novel mechanism to destroy hypoxic tumor cells that may help reverse the resistance of hypoxic tumors to radiation and chemotherapy and perhaps target tumor stem cells.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 1699