Oncotarget

Research Papers:

Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis

Alexander V. Ivanov _, Vladimir T. Valuev-Elliston, Daria A. Tyurina, Olga N. Ivanova, Sergey N. Kochetkov, Birke Bartosch and Maria G. Isaguliants

PDF  |  HTML  |  How to cite  |  Order a Reprint

Oncotarget. 2017; 8:3895-3932. https://doi.org/10.18632/oncotarget.13904

Metrics: PDF 1169 views  |   HTML 9199 views  |   ?  


Abstract

Alexander V. Ivanov1, Vladimir T. Valuev-Elliston1, Daria A. Tyurina1, Olga N. Ivanova1, Sergey N. Kochetkov1, Birke Bartosch2,3 and Maria G. Isaguliants4,5

1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia

2 Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France

3 DevWeCan Laboratories of Excellence Network, France

4 Riga Stradins University, Riga, Latvia

5 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

Correspondence to:

Alexander V. Ivanov, email:

Maria G. Isaguliants, email:

Keywords: hepatitis C virus, hepatitis B virus, reactive oxygen species, pathogenesis, carcinogenesis

Received: July 22, 2016 Accepted: December 05, 2016 Published: December 11, 2016

Abstract

Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 13904