Oncotarget

Research Papers:

Stag3 regulates microtubule stability to maintain euploidy during mouse oocyte meiotic maturation

Mianqun Zhang, Xiaoxin Dai, Yalu Sun, Yajuan Lu, Changyin Zhou, Yilong Miao, Ying Wang and Bo Xiong _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:1593-1602. https://doi.org/10.18632/oncotarget.13684

Metrics: PDF 2120 views  |   HTML 2649 views  |   ?  


Abstract

Mianqun Zhang1, Xiaoxin Dai1, Yalu Sun1, Yajuan Lu1, Changyin Zhou1, Yilong Miao1, Ying Wang2, Bo Xiong1

1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

2Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China

Correspondence to:

Bo Xiong, email: [email protected]

Keywords: Stag3, spindle assembly, chromosome alignment, microtubule stability, aneuploid egg

Received: October 20, 2016     Accepted: November 12, 2016     Published: November 29, 2016

ABSTRACT

Stag3, a meiosis-specific subunit of cohesin complex, has been demonstrated to function in both male and female reproductive systems in mammals. However, its roles during oocyte meiotic maturation have not been fully defined. In the present study, we report that Stag3 uniquely accumulates on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Depletion of Stag3 by gene-targeting morpholino disrupts normal spindle assembly and chromosome alignment in oocytes. We also find that depletion of Stag3 reduces the acetylated level of tubulin and microtubule resistance to microtubule depolymerizing drug, suggesting that Stag3 is required for microtubule stability. Consistent with these observations, kinetochore-microtubule attachment, an important mechanism controlling chromosome alignment, is severely impaired in Stag3-depleted oocytes, resultantly causing the significantly increased incidence of aneuploid eggs. Collectively, our data reveal that Stag3 is a novel regulator of microtubule dynamics to ensure euploidy during moue oocyte meiotic maturation.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 13684