Oncotarget

Research Papers:

This article is currently under investigation. We strongly recommend that this article is not cited until the investigation is completed.

A directly negative interaction of miR-203 and ZEB2 modulates tumor stemness and chemotherapy resistance in nasopharyngeal carcinoma

Qingping Jiang, Ying Zhou, Huiling Yang, Libo Li, Xiaojie Deng, Chao Cheng, Yingying Xie, Xiaojun Luo, Weiyi Fang _ and Zhen Liu

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:67288-67301. https://doi.org/10.18632/oncotarget.11691

Metrics: PDF 2145 views  |   HTML 2339 views  |   ?  


Abstract

Qingping Jiang1,*, Ying Zhou2,3,*, Huiling Yang2,5,*, Libo Li3,*, Xiaojie Deng2, Chao Cheng2, Yingying Xie3, Xiaojun Luo3, Weiyi Fang2,3, Zhen Liu2,4

1Department of Pathology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China

2Cancer Research Institute, Southern Medical University, Guangzhou 510515, China

3Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China

4Department of Pathology, Medical University of Guangzhou, Guangzhou 510182, China

5Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan 523808, China

*These authors have contributed equally to this work

Correspondence to:

Weiyi Fang, email: [email protected]

Zhen Liu, email: [email protected]

Keywords: miR-203a, ZEB2, NPC, tumor stemness, chemotherapy resistance

Received: March 06, 2016     Accepted: July 18, 2016     Published: August 30, 2016

ABSTRACT

miR-203 is a tumor suppressor that is disregulated in numerous malignancies including nasopharyngeal carcinoma (NPC). However, the role of miR-203 in suppressing tumor stemness, chemotherapy resistance as well as its molecular mechanisms are unclear. In this study, we observed that miR-203 suppressed cell migration, invasion, tumor stemness, and chemotherapy resistance to cisplatin (DDP) in vitro and in vivo. miR-203 exerted these effects by targeting ZEB2 and downstream epithelial-mesenchymal transition (EMT) and tumor stemness signals. Interestingly we observed that miR-203 expression was directly suppressed by ZEB2 via targeting its promoter, which significantly reduced cell migration, invasion, tumor stemness, and chemotherapy resistance in NPC cells. Finally, we found that miR-203 was negatively correlated with ZEB2 expression in NPC tissues and tumor spheres. Our data demonstrate a directly negative feedback loop between miR-203 and ZEB2 participating in tumor stemness and chemotherapy resistance, highlighting the therapeutic potential of targeting this signal for NPC chemotherapy.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 11691