Oncotarget

Research Papers:

Blockade efficacy of MEK/ERK-dependent autophagy enhances PI3K/Akt inhibitor NVP-BKM120's therapeutic effectiveness in lung cancer cells

Hui Ren, Hua Guo, Asmitananda Thakur, Shuo Zhang, Ting Wang, Yiqian Liang, Puyu Shi, Lei Gao, Feng Liu, Jing Feng, Tianjun Chen, Tian Yang, Dong Shang, Johnson J. Liu, Feng Xu and Mingwei Chen _

PDF  |  HTML  |  How to cite

Oncotarget. 2016; 7:67277-67287. https://doi.org/10.18632/oncotarget.11645

Metrics: PDF 2692 views  |   HTML 2524 views  |   ?  


Abstract

Hui Ren1,2,*, Hua Guo3,*, Asmitananda Thakur1,4, Shuo Zhang1, Ting Wang1, Yiqian Liang1, Puyu Shi1, Lei Gao1, Feng Liu1, Jing Feng1, Tianjun Chen1, Tian Yang1, Dong Shang1, Johnson J. Liu5, Feng Xu2, Mingwei Chen1

1Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China

2Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China

3Department of Respiratory Medicine, Xi’an Central Hospital, Xi’an, Shaanxi, China

4Department of Internal Medicine, Life Guard Hospital, Biratnagar, Nepal

5Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia

*These authors have contributed equally to this work

Correspondence to:

Mingwei Chen, email: [email protected]

Keywords: autophagy, apoptosis, BKM120, ERK, lung cancer

Received: September 15, 2015    Accepted: August 13, 2016    Published: August 27, 2016

ABSTRACT

NVP-BKM120 (BKM120) is a new pan-class I phosphatidylinositol-3 kinase (PI3K) inhibitor and has been tested in clinical trials as an anticancer agent. In this study, we determined whether BKM120 induces autophagy and the impact of autophagy induction on BKM120’s growth-inhibitory activity. BKM120 potently induced elevation of autophagosome-bound type II LC3 (LC3-II) protein, predominantly in cell lines insensitive to BKM120, thereby inducing autophagy. The presence of lysosomal protease inhibitor chloroquine further enhanced the levels of LC3-II. BKM120 combined with chloroquine, enhanced growth-inhibitory effects including induction of apoptosis, suggesting that autophagy is a protective mechanism counteracting BKM120’s growth-inhibitory activity. Interestingly, BKM120 increased p-ERK1/2 levels. When blocking the activation of this signaling with MEK inhibitors or with knockdown of ERK1/2, the ability of BKM120 to increase LC3-II was attenuated and the growth-inhibitory effects including induction of apoptosis were accordingly enhanced, suggesting that the MEK/ERK activation contributes to BKM120-induced authophagy. In mouse xenograft model, we also found that the combination of BKM120 and PD0325901 synergistically suppressed cell growth in human lung cancer cells. Thus, the current study not only reveals mechanisms accounting for BKM120-induced autophagy, but also suggests an alternative method to enhance BKM120’s therapeutic efficacy against non-small cell lung cancer(NSCLC) by blocking autophagy with either a lysosomal protease inhibitor or MEK inhibitor.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 11645