Oncotarget

Research Papers:

Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells

Samuel Gonçalves-Ribeiro, Natalia Guillen Díaz-Maroto, Mireia Berdiel-Acer, Antonio Soriano, Jordi Guardiola, Mercedes Martínez-Villacampa, Ramon Salazar, Gabriel Capellà, Alberto Villanueva, Eva Martínez-Balibrea and David G. Molleví _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:59766-59780. https://doi.org/10.18632/oncotarget.11121

Metrics: PDF 2878 views  |   HTML 3700 views  |   ?  


Abstract

Samuel Gonçalves-Ribeiro1, Natalia Guillen Díaz-Maroto1, Mireia Berdiel-Acer1, Antonio Soriano2, Jordi Guardiola2, Mercedes Martínez-Villacampa3, Ramon Salazar3, Gabriel Capellà4, Alberto Villanueva1, Eva Martínez-Balibrea5, David G. Molleví1

1Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, IDIBELL, L’Hospitalet de Llobregat, Catalonia, Spain

2Gastroenterology Department, Endoscopy Unit, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Catalonia, Spain

3Medical Oncology Department, Catalan Institute of Oncology, IDIBELL, L’Hospitalet de Llobregat, Catalonia, Spain

4Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, L’Hospitalet de Llobregat, Catalonia, Spain

5Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, IGTP, Badalona, Catalonia, Spain

Correspondence to:

David G. Molleví, email: [email protected]

Keywords: carcinoma-associated fibroblasts, microenvironment-mediated drug resistance, colorectal cancer, resistance, chemotherapy

Received: May 11, 2016    Accepted: July 19, 2016    Published: August 08, 2016

ABSTRACT

The importance of tumor microenvironment (TME) as a relevant contributor to cancer progression and its role in the development of de novo resistance to targeted therapies has become increasingly apparent. However, the mechanisms of microenvironment-mediated drug resistance for nonspecific conventional chemotherapeutic agents, such as platinum compounds or antimetabolites, are still unclear.

Here we describe a mechanism induced by soluble factors released by carcinoma-associated fibroblasts (CAFs) that induce the translocation of AKT, Survivin and P38 to the nucleus of tumor cells. These changes are guided to ensure DNA repair and the correct entrance and exit from mitosis in the presence of chemotherapy. We used conditioned media (CM) from normal-colonic fibroblasts and paired CAFs to assess dose response curves of oxaliplatin and 5-fluorouracil, separately or combined, compared with standard culture medium. We also evaluated a colony-forming assay and cell death to demonstrate the protective role of CAF-CM. Immunofluorescence confirmed the translocation of AKT, P38 and Survivin to the nucleus induced by CAF-soluble factors. We also have shown that STAT3 or P38 inhibition provides a promising strategy for overcoming microenvironment-mediated resistance. Conversely, pharmacologic AKT inhibition induces an antagonistic effect that relieves a cMET and STAT3-mediated compensatory feedback that might explain the failure of AKT inhibitors in the clinic so far.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 11121