Oncotarget

Research Papers:

Induction of apoptosis and autophagy via mitochondria- and PI3K/Akt/mTOR-mediated pathways by E. adenophorum in hepatocytes of saanen goat

Yajun He, Quan Mo, Biao Luo, Yan Qiao, Ruiguang Xu, Zhicai Zuo, Xiang Nong, Junliang Deng, Guangneng Peng, Wei He, Yahui Wei _ and Yanchun Hu

PDF  |  HTML  |  How to cite

Oncotarget. 2016; 7:54537-54548. https://doi.org/10.18632/oncotarget.10402

Metrics: PDF 2626 views  |   HTML 2962 views  |   ?  


Abstract

Yajun He1,*, Quan Mo1,*, Biao Luo1, Yan Qiao1, Ruiguang Xu1, Zhicai Zuo1, Junliang Deng1, Xiang Nong2, Guangneng Peng1, Wei He3, Yahui Wei3, Yanchun Hu1

1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Wenjiang 611130, China

2College of Life Science, Leshan Normal University, Le’shan, 614000, China

3Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Science, Northwest University, Xi’an 710069, China

*These authors contributed equally to this work

Correspondence to:

Yanchun Hu, email: [email protected]

Yahui Wei, email: [email protected]

Keywords: E. adenophorum, apoptosis, autophagy, mitochondrial and PI3K/Akt/mTOR pathway, hepatocytes

Received: January 21, 2016     Accepted: June 12, 2016     Published: July 05, 2016

ABSTRACT

E. adenophorum has reported to cause hepatotoxicity. But, the precise effects of E. adenophorum on hepatocytes is unclear. Saanen goats were fed on E. adenophorum to detect the cytotoxicity effects of E. adenophorum on hepatocytes. Our study has shown that the typical apoptotic features, the increasing apoptotic hepatocytes and activated caspase-9, -3 and the subsequent cleavage of PARP indicated the potent pro-apoptotic effects of E. adenophorum. Moreover, the translocation of Bax and Cyt c between mitochondria and cytosol triggering the forming of apoptosome proved that the mitochondria-mediated apoptosis was triggered by E. adenophorum. Furthermore, E. adenophorum increased the MDC-positive autophagic vacuoles and the subcellular localization of punctate LC3, the ratio of LC3-II/LC3-I and the protein levels of Beclin 1, but decreased that of P62, indicating the potent pro-autophagic effects of E. adenophorum. In addition, E. adenophorum significantly inhibited the protein leves of p-PI3K, p-Akt and p-mTORC1, but increased PTEN and p-AMPK. Also, the p-mTORC2 and p-Akt Ser473 were inhibited, indicating that the supression of mTORC2/Akt pathway could induce the autophagy of hepatocytes. The autophagy-realted results indicated that the inhibition of PI3K/Akt/mTORC1- and mTORC2/Akt-mediated pathways contributed to the pro-autophagic activity of E. adenophorum. These findings provide new insights to understand the mechanisms involved in E. adenophorum-caused hepatotoxicity of Saanen goat.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 10402