Oncotarget

Research Papers:

Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis

Raphaela Fritsche-Guenther, Franziska Witzel, Stefan Kempa, Tilman Brummer, Christine Sers and Nils Blüthgen _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:7960-7969. https://doi.org/10.18632/oncotarget.6959

Metrics: PDF 2449 views  |   HTML 2386 views  |   ?  


Abstract

Raphaela Fritsche-Guenther1, Franziska Witzel2,3, Stefan Kempa1, Tilman Brummer4, Christine Sers2, Nils Blüthgen2,3,5

1Max-Delbrück-Center for Molecular Medicin (MDC) Berlin Buch, The Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany

2Institute of Pathology, Molecular Tumor Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany

3Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany

4Institute of Molecular Medicine and Cell Research and Centre for Biological Signalling Studies BIOSS, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany

5Integrative Research Institute for the Life Sciences, Humboldt University Berlin, 10099 Berlin, Germany

Correspondence to:

Nils Blüthgen, e-mail: [email protected]

Keywords: sorafenib, signal transduction networks, BRAF, KRAS, colon cancer

Received: August 11, 2015     Accepted: December 23, 2015     Published: January 20, 2016

ABSTRACT

Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 6959