Therapeutic efficacy of combined BRAF and MEK inhibition in metastatic melanoma: a comprehensive network meta-analysis of randomized controlled trials

Ruiqin Mai^{1,*}, Songxia Zhou^{2,*}, Weixiang Zhong^{3,*}, Siming Rong², Zhichao Cong², Yunxian Li², Qizhi Xie², Huanming Chen², Xiaoyun Li², Shuhui Liu², Yabin Cheng⁴, Yuanshen Huang⁴, Youwen Zhou⁴ and Guohong Zhang^{2,4}

¹ Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China

² Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China

³ Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China

⁴ Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada

* These authors have contributed equally to this work

Correspondence to: Youwen Zhou, email: Youwen.Zhou@ubc.ca

Guohong Zhang, **email**: g_ghzhang@stu.edu.cn

Keywords: combing BRAF and MEK inhibition, targeted therapy, melanoma

Received: May 01, 2015 **Accepted**: June 03, 2015

Published: June 08, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Background: Several recent randomized clinical trials have preliminarily demonstrated that initial targeted therapy with combined BRAF and MEK inhibition is more effective in metastatic melanoma (MM) than single agent. To guide therapeutic decisions, we did a comprehensive network meta-analysis to identify evidence to robustly support whether combined BRAF and MEK inhibition is the best initial targeted therapeutic strategy for patients with MM.

Methods: The databases of PubMed and trial registries were researched for randomized clinical trials of targeted therapy. Data of outcome were extracted on progression-free survival (PFS), objective response rate (ORR), and overall survival (OS). Network meta-analysis using a Bayesian statistical model was performed to evaluate relative hazard ratio (HR) for PFS and OS, odds ratio (OR) for ORR.

Results: Finally, 16 eligible trials comprising 5976 participants were included in this meta-analysis. PFS were significantly prolonged in patients who received combined BRAF-MEK inhibition compared with those who received BRAF inhibition (HR: 0.58, 95%CI: 0.51-0.67, P < 0.0001) or MEK inhibition alone (HR: 0.29, 95%CI: 0.22-0.37, P < 0.0001). Combined BRAF-MEK inhibition also improved the OS over BRAF inhibition (HR: 0.67, 95%CI: 0.56-0.81, P < 0.0001) or MEK inhibition alone (HR: 0.48, 95%CI: 0.36-0.65, P < 0.0001). The ORR was superior in combined BRAF and MEK inhibition comparing with BRAF inhibition (OR: 2.00, 95%CI: 1.66-2.44, P< 0.0001) or MEK inhibition alone (OR: 20.66, 95%CI: 12.22-35.47, P < 0.0001).

Conclusions: This study indicates that concurrent inhibition of BRAF and MEK improved the most effective therapeutic modality as compared as single BRAF or MEK inhibition for patients with MM.

INTRODUCTION

Metastatic melanoma (MM) used to be a fatal

disease with an average survival of 7 months after diagnosis, since treatment options were limited. The discovery of driver oncogenic mutations of BRAF (eg.V600E, V600K) opens a new era in targeted therapy for MM. Indeed, the potent and specific BRAF (eg. dabrafenib, vemurafenib and sorafenib) inhibition, as compared with chemotherapy, have provided considerable clinical benefits including progression-free survival (PFS), overall survival (OS) and objective response rate (ORR) in patients with MM [1, 2]. However, most patients relapsed about 7 months after targeted therapy and approximately 14-26% of patients have development of secondary cutaneous squamous cell carcinoma and hyperkeratotic lesions within the first 2-3 months after BRAF inhibition [3]. Mechanism of acquired resistance commonly involves reactive MAPK pathway through mutant BRAF amplification and mutations activating RAS and MEK [4]. Therefore, downstream MAPK inhibition, such as MEK inhibition, was recognized as a promising target option. In fact, MEK inhibition (eg. trametinib) improved overall survival of MM patients with BRAF V600 mutation and not previously treated with BRAF inhibitors compared with chemotherapy [5]. In addition, the cutaneous adverse effects, such as cutaneous squamous cell carcinoma resulted by BRAF-inhibitorinduced paradoxical activation of the MAPK pathway in keratinocytes with upstream activation of signaling by preexisting RAS mutations [6, 7], which can be blocked with the addition of a MEK inhibition. Thus, combinative targeting the MAPK pathway via BRAF and MEK seem to provide greater clinical efficacy and reduce the adverse effects compared with BRAF inhibition alone.

Concurrent targeting BRAF and MEK has been considered the possibility to enhance tumor growth inhibition, delay acquired resistance, and abrogate paradoxical activation of the MAPK pathway in preclinical models of melanoma [6]. Recently several randomized controlled trials are on the way to evaluate efficacy of combined BRAF and MEK inhibition, such as the BRAF inhibitor dabrafenib and the MEK inhibition trametinib, have demonstrated superior response rate and prolonged survival [8-11]. However, the optimum treatment remains controversial and the feedback is not encouraged in term of the modestly enhanced, therapeutic efficacy [12]. In other way, it is difficult to integrate information on the relative efficacy compared with other combination treatments such as BRAF-chemotherapy, MEK-chemotherapy, and MEK alone. To establish the optimum treatment for MM, we did a random-effects network meta-analysis to compare combined BRAF and MEK inhibition in term of PFS, OS and ORR, respectively.

RESULTS

Eligible trials

We identified 451 relevant references for review title and abstract. After initial screening, we retrieved the full text of 32 potentially eligible clinical trials for detailed assessment. Of these, 22 randomized controlled trials were evaluated in more detail, and 18 randomized controlled trials with phase II or III were found that met the eligibility criteria for this study. Finally, 16 eligible trials reporting randomized controlled trials were included for meta-analysis, with a total of 5976 patients randomized to receive two of the six treatment strategies [1, 2, 5, 8-11, 13-21]. Figure 1 depicted the flow diagram of the systematic literature search and selection of random control trials. The characteristics of the 16 included trials were summarized in the Table 1. Six strategies were included: combined BRAF and MEK inhibition, combined BRAF inhibition and chemotherapy, combined MEK inhibition and chemotherapy, BRAF inhibition alone, MEK inhibition alone and chemotherapy alone. Figure 2 showed all the comparisons analyzed within the network. Across the 16 trials, BRAF mutant patients accounted for 64.45% (3851/5976).

Progress-free survival (PFS)

Data on PFS were available in fifteen studies, and HR values were explicitly reported in those studies. We summarized the results of our random-effects network meta-analysis for PFS in Figure 3A. Combined BRAF-MEK inhibition improved significant prolonged PFS, as compared with BRAF inhibition (HR: 0.58, 95%CI: 0.51-0.67, P < 0.0001) or MEK inhibition alone (HR: 0.29, 95%CI: 0.22-0.37, P < 0.0001), respectively. The network graph and forest plot of traditional pair-wise direct comparison were drawn to graphically display the results of the available direct comparisons between treatments. Comparing results from traditional pairwise meta-analysis (Figure 4A) and network meta-analysis did not suggest inconsistency between direct and indirect evidences. The network meta-analysis showed a statistically significant advantage for BRAF inhibition as compared with MEK inhibition (HR: 0.53, 95CI%: 0.42-0.68, *P* < 0.0001).

Overall survival (OS)

Total 15 trials, with enrolled patients, contributed to our analysis of OS. As shown in Figure 3B, the ranking probabilities of treatment from the network meta-analysis of OS indicated that, of the 6 therapeutic strategies, combined BRAF-MEK inhibition had the highest

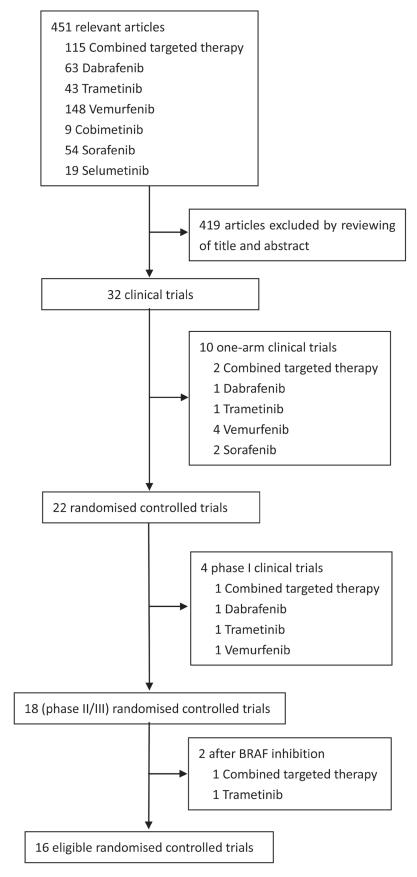


Figure 1: Study flow chart.

	Year	Comparison		No. of Patients	Progress-free survival	Over-all survival	Respon (%)	se rate	BRAF mutation	ClinicalTrials. gov number	Phase
		Arm 1	Am2		HR (95%CI)	HR (95%CI)	Arm 1	Am2			
Carvajal ²⁷	2014	Selumetinib	Temozolomide	101	0+46(0+30-0+71)	0-66(0-41-1-06)			Unknown	NCT01143402	п
Chapman ¹	2011	Vemurafenib	Dacarbazine	675	0.26(0.20-0.33)	0-37(0-26-0-55)	48	5	V600E	NCT01006980	ш
Flaherty	2012	Dabraferib trametinib	Dabrafenib	108	0-39(0-25-0-62)	NA	76	54	V600E V600K V600R	NCT01072175	П
Flaherty	2012	Trametinib	Dacarbazine Paclitaxel	322	0•42(0•29-0•59)	0•54(0•32-0•92)	22	8	V600E, V600K	NCT01245062	ш
Flaherty ²²	2013	Sorafenib Carboplatin Paclitaxel	Carboplatin Paclitaxel	823	0-90(0-78-1-03)	1•01(0•87-1•18)	20-50	18-20	Unknown	NCT00110019	ш
Gupta ²⁴	2014	Selumetinib Docetaxel	Docetaxel Placebo	83	0•75(0•50-1•14)	1•15(0•71-1•84)	32	14	None	NCT01256359	п
Hauschild ²¹	2009	Sorafenib Carboplatin Paclitaxel	Carboplatin Paclitaxel placebo	270	0•91(0•63-1•31)	1•01(0•76-1•36)	12	11	Unknown	NCT00111007	Ш
Hauschild ²	2012	Dabrafenib	Dacarbazine	250	0.30(0.18-0.51)	0-61(0-25-1-48)	50	6	V600E	NCT01227889	ш
Kirkwood ²⁶	2012	Selumetinib	Temozolomide	200	1•07(0•86-1•32)	NA	5-80	9•40	BRAF	NCT00338130	ш
Larkin ¹⁰	2014	Vemurafenib cobimetinib	Vemurafenib Placebo	495	0-51(0-39-0-68)	0-65(0-42-1-00)	68	45	V600	NCT01689519	ш
Long ⁸	2014	Dabrafenib Trametinib	Dabrafenib	423	0•75(0•57-0•99)	0-64(0-42-0-95)	67	51	V600E, V600K	NCT01584648	ш
McArthur ²⁸	2014	Vemurafenib	Dacarbazine	675	0•38(0•32-0•46)	0•70(0•57-0•87)	57	9	V600E, V600K	NCT01006980	ш
McDermot."	2008	Sorafenib Dacarbazine	Dacarbazine	101	0•67(0•43-1•03)	1•02(0•65-1•62)	24	12	Unknown	NCT00110994	п
Ribas ²⁸	2013	Trametinib	Chemotherapy	655	NA	0-88(0-77-1-05)	11	10	Unknown	NCT00257205	ш
Robert ²³	2013	Selumetinib Dacarbazine	Dacarbazine placebo	91	0•63(0•47-0•84)	0•93(0•67-1•28)	40	26	Unknown	NCT00936221	п
Robert ¹¹	2015	Dabrafenib Trametinib	Vemurafenib	704	0*56(0*46-0*69)	0+69(0+53-0+89)	64	51	V600	NCT01597908	ш

probability of being the best treatment arm for MM. Combined BRAF-MEK inhibition improved significant prolonged OS comparing with BRAF inhibition (HR: 0.67, 95%CI: 0.56-0.81, P < 0.0001) or MEK inhibition alone (HR: 0.48, 95%CI: 0.36-0.65, P < 0.0001), respectively.

Whereas, these results demonstrated that single BRAF inhibition had a statistically significantly longer in OS than MEK inhibition alone (HR: 0.72, 95%CI: 0.56-0.91, P = 0.008), and combined BRAF inhibition and chemotherapy (HR: 0.60, 95%CI: 0.47-0.73, P < 0.0001). This finding

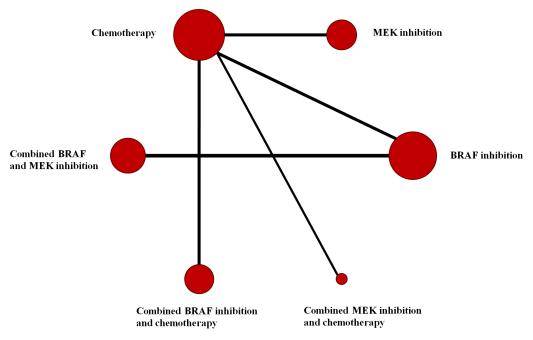


Figure 2: Network of comparisons for the Bayesian network meta-analysis. Each circle represents an agent included in the analysis, with the area proportional to the number of studies comparing the particular arms. Each line represents direct comparisons between agents, with the thickness corresponding to the number of available direct within-trial comparisons.

strengthened the results of the direct comparisons (Figure 4B).

Objective response rate (ORR)

A

Combined BRAF and MEK inhibition

Total 15 studies including patients contributed to the analysis of objective response rate (ORR). In the Figure 3C, the strategy was better when corresponding OR value was over 1. Compared with chemotherapy, combined BRAF-MEK inhibition improved highest ORR (OR: 29.46, 95%CI: 20.04-43.57, P < 0.0001), followed by BRAF inhibition alone (OR: 14.65, 95%CI: 10.49-20.90, P < 0.0001), and combined MEK-chemotherapy (OR: 2.18, 95%CI: 1.10-4.23, P = 0.5982). Furthermore, the ORR was superior in patients who received combined BRAF-MEK inhibition compared with those who received BRAF inhibition (OR: 2.00, 95%CI: 1.66-2.44, P < 0.0001) or MEK inhibition alone (OR: 20.66, 95%CI: 12.22-35.47, P < 0.0001). The single BRAF inhibition yielded better response rate than MEK inhibition alone (OR: 10.34, 95%CI: 6.23-17.60, P < 0.0001). Values of surface under the cumulative ranking probability curve (SUCRA, Figure 5) indicated that combined BRAF and MEK inhibition had the highest probability of being the best treatment arm for ORR (SUCRA = 1.00), followed by BRAF inhibition alone (SUCRA = 0.80), and combined MEK and chemotherapy (SUCRA = 0.56). Analysis of inconsistency between direct (Figure 4C) and indirect comparisons indicated that no statistically significant inconsistency was identified in ORR.

	Innibition					
	0.58 (0.51-0.67)	BRAF inhibition				
	0.29 (0.22-0.37)	0.53 (0.42-0.68)	MEK inhibition			
	0.27 (0.18-0.38)	0.49 (0.34-0.68)	0.92 (0.63-1.34)	Combined MEK inhibition and chemotherapy		
	0.21 (0.16-0.26)	0.38 (0.32-0.45)	0.71 (0.57-0.90)	0.79 (0.56-1.13)	Combined BRAF inhibition and chemotherapy	
	0.18 (0.15-0.22)	0.33 (0.29-0.38)	0.63 (0.51-0.78)	0.70 (0.49-0.95)	0.88 (0.78-0.99)	Chemotherapy
D						
ر	Combined BRAF and MEK inhibition					
	0.67 (0.56-0.81)	BRAF inhibition				
	0.48 (0.36-0.65)	0.72 (0.56-0.91)	MEK inhibition			
	0.40 (0.29-0.54)	0.60 (0.47-0.73)	0.83 (0.68-0.99)	Combined BRAF inhibition and chemotherapy		
	0.40 (0.25-0.61)	0.60 (0.39-0.88)	0.84 (0.56-1.21)	1.01 (0.68-1.46)	Combined MEK inhibition and chemotherapy	
	0.41 (0.31-0.52)	0.600 (0.50-0.71)	0.84 (0.73-0.96)	1.01 (0.88-1.14)	1.04 (0.70-1.48)	Chemotherapy
~						
	Combined BRAF and MEK inhibition					
	2.00 (1.66 – 2.44)	BRAF inhibition				
	13.66 (6.25 – 28.31)	6.80 (3.18 - 13.98)	Combined MEK inhibition and chemotherapy			
	20.66 (12.22 - 35.47)	10.34 (6.23 – 17.60)	1.52 (0.68 - 3.35)	MEK inhibition		
	24.11 (15.07 - 39.51)	12.03 (7.77 – 18.71)	1.80 (0.87 - 3.80)	1.17 (0.72 – 1.89)	Combined BRAF inhibition and chemotherapy	
	29.46 (20.04 - 43.57)	14.65 (10.49 - 20.90)	2.18 (1.10 - 4.23)	1.42 (0.97 - 2.09)	1.22 (0.89 - 1.63)	Chemotherapy

Figure 3: Pooled hazard ratios for survival and odds ratios for objective response rate by network meta-analysis.

Α

Study ID	HR (95% CI)	% Weight
BRAFi+MEKi vs BRAFi		
Flaherty2012	0.39 (0.25, 0.62)	6.93
Long2014	- 0.75 (0.57, 0.99)	6.61
Larkin2014	0.51 (0.39, 0.68)	7.41
Robert2015	0.56 (0.46, 0.69)	7.73
Subtotal (I-squared = 54.8%, p = 0.084)	0.55 (0.43, 0.66)	28.69
BRAFi+chemotherapy vs chemotherapy		
McDermott2008	- 0.66 (0.43, 1.03)	5.44
Hauschild2009	0.91 (0.69, 1.20)	6.02
Flaherty2013	0.90 (0.78, 1.03)	7.63
Subtotal (I-squared = 8.9%, p = 0.333)	> 0.87 (0.75, 0.98)	19.09
MEKI+chemotherapy vs chemotherapy		
Robert2013	- 0.63 (0.40, 0.99)	5.50
Gupta2014	0.75 (0.46, 1.22)	4.49
Subtotal (I-squared = 0.0%, p = 0.625)	0.68 (0.44, 0.91)	10.00
BRAFi vs chemotherapy		
Hauschild2012	0.30 (0.18, 0.51)	7.18
McArthur2014	0.38 (0.32, 0.46)	8.10
Chapman2011 👻	0.26 (0.20, 0.33)	8.13
Subtotal (I-squared = 67.2%, p = 0.048)	0.32 (0.23, 0.40)	23.42
MEKi vs chemotherapy		
Kirkwood2012	1.07 (0.77, 1.48)	4.77
Carvajal2014	0.46 (0.30, 0.71)	6.68
Flaherty2012	0.42 (0.29, 0.59)	7.36
Subtotal (I-squared = 82.1%, p = 0.004)	0.61 (0.30, 0.91)	18.81
Overall (I-squared = 89.4%, p = 0.000)	0.57 (0.45, 0.69)	100.00
NOTE: Weights are from random effects analysis		

В

BRAFi+MEKi vs BRAFi		5% CI)	% Weig	ght
Long2014				
Larkin2014	0.64.0	.42, 0.95)	7.76	
Robert2015				
).42, 1.00)		
Subtotal (I-squared = 0.0%, p = 0.944)	0.69 (0).53, 0.89)	9.37	
	0.67 (0	0.54, 0.80)	24.4	2
BRAFi+chemotherapy vs chemotherapy				
McDermott2008	1 02 (0	.65, 1.62)	4.42	
Hauschild2009		.76, 1.36)		
Flaherty2013		.87, 1.18)		
Subtotal (I-squared = 0.0%, p = 0.999)	1.01 (0).88, 1.14)	21.3	б
MEKi+chemotherapy vs chemotherapy				
Robert2013	0.93 (0	0.57, 1.53)	4.48	
Gupta2014	— 1.15 (C	.65, 2.03)	2.72	
Subtotal (I-squared = 0.0%, p = 0.608)		.61, 1.40)		
BRAFi vs chemotherapy				
Hauschild2012	0.64 //	25 1 40	3.22	
	0.01 (0	0.25, 1.48)		
McArthur2014		.57, 0.87)		
Chapman2011		0.26, 0.55)		
Subtotal (I-squared = 79.3%, p = 0.008)	0.55 (0	0.27, 0.82)	23.1	4
MEKi vs chemotherapy				
Carvajal2014	0.66 (0	.41, 1.06)	6.68	
Flaherty2012		.32, 0.92)		
Ribas2013		.77, 1.05)		
Subtotal (I-squared = 58.8%, p = 0.088)		.50, 0.95)		
	0.75 (0		20.0	
Overall (I-squared = 74.2%, p = 0.000)	0.75 (0	.62, 0.88)	100.	00
NOTE: Weights are from random effects analysis				
0.25.5 1	2 2.5			
Study	OR (95% CI)	Events, Treatment	Events, Control	% We
D				
ID BRAFI-MEKi vs BRAFI				
BRAFIHMEKI vs BRAFI Filaherty2012	2.72 (1.20, 6.18)	41/54	29/54	6.3
BAAFI-MEXi vs 8RAFI Flahen/2012 Long2014	1.90 (1.28, 2.81)	140/211	108/212	7.4
	1.90 (1.28, 2.81) 2.53 (1.75, 3.64)	140/211 167/248	108/212 111/247	7.4 7.5
BARH-MEDI Va BARH Falestyllt2 Lakkool14 Lakkool14 	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32)	140/211 167/248 226/352	108/212 111/247 180/352	7.4 7.5 7.6
	1.90 (1.28, 2.81) 2.53 (1.75, 3.64)	140/211 167/248	108/212 111/247	7.4 7.5
RAPF-HIGN vs BRAP1 Fullerty2012 Long2014 Lank2014 Lank2014 Subtrotal (=squared = 5.5%, p = 0.355) Subtrotal (=squared = 5.5%, p = 0.355) Subtrotal (=squared = 5.5%, p = 0.355)	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47)	140/211 167/248 226/352 574/865	108/212 111/247 180/352 428/865	7.4 7.5 7.6 29:
BRAF1-MIDIX vs BRAF1 Faller,197012 Larki2014 Executed i - 5%, p = 0.365) BRAF1-Chembertagy vs Chemotherapy Michemited State - 5%, p = 0.365	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58)	140/211 167/248 226/352 574/865	108/212 111/247 180/352 428/865 6/50	7.4 7.5 7.6 29:
BAP1-HUBV vs BBAP1 Flahts/0212 Long2014 Lank2014 Lank2014 Subtribution (+oguared = 5.5%, p = 0.366) Subtributi (+oguared = 5.5%, p = 0.366) MCE-mothersapy MCE-mothersapy MCE-mothersapy	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58) 1.08 (0.51, 2.27)	140/211 167/248 226/352 574/865 12/51 16/135	108/212 111/247 180/352 428/865 6/50 15/135	7.4 7.5 7.6 29: 5.6 6.5
BRAFHABOS V9 BRAFI Fales (7)/012 Larki20014 Larki20014 BRAFHABCHORDERBY V9 Chemotherapy McCemotDools Hauschi2009 Ha	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58) 1.08 (0.51, 2.27) 1.16 (0.82, 1.64)	140/211 167/248 226/352 574/865 12/51 16/135 84/410	108/212 111/247 180/352 428/865 6/50 15/135 75/413	7.4 7.5 7.6 29: 5.6 6.5 7.5
RAP1-HUBIN vy BRAP1 Falahty/2012 Long2014 Land2014 Land2014 Robert2016 Stand2014	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58) 1.08 (0.51, 2.27)	140/211 167/248 226/352 574/865 12/51 16/135	108/212 111/247 180/352 428/865 6/50 15/135	7.4 7.5 7.6 29: 5.6 6.5
BIAP1-MEDI Va BIAP1 Flahen/2012 Lank20014 Lank20014 Biodetail (= 6, savete = 5, 5%, p = 0, 565) Biodetail (= 6, savete = 5, 5%, p = 0, 565) Biodetail (= 6, savete = 5, 5%, p = 0, 565) Flahen/2013 Sindetail (= 6, savete = 0, 5%, p = 0, 464) MESI-chemotherapy va chemotherapy	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58) 1.08 (0.51, 2.27) 1.16 (0.82, 1.64) 1.21 (0.89, 1.63)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598	7.4 7.5 7.6 29: 5.6 6.5 7.5 19:
BRAF+MEX vs BRAFI Fuller,57012 Larki2014 Larki2014 BRAF+Chembreagy vs Chemotherapy Medicatal (=squared = 5.5%, p = 0.365) BRAF+Chemotherapy vs Chemotherapy Headschaft (=squared = 0.0%, p = 0.484) MDG+Chemotherapy vs Chemotherapy Recet2013 BRAF+Chemotherapy vs Chemotherapy Recet2013	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58) 1.08 (0.51, 2.27) 1.16 (0.82, 1.64) 1.21 (0.89, 1.63) 1.77 (0.73, 4.29)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1
BIAP1+ME0k vp BIAP1 Flahen(5012 Lank20014 Lank20014 Biotection (5 s, p = 0.365) Skottal (-opcared = 5.5%, p = 0.365) MCDI+Tubentholing vs chemotherapy MCDI+Tubentholing vs chemotherapy Flahen(7013) Skottal (-opcared = 0.0%, p = 0.461) MEDi+tubentholing vs chemotherapy	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.71 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58) 1.08 (0.51, 2.27) 1.16 (0.82, 1.64) 1.21 (0.89, 1.63)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598	7.4 7.5 7.6 29: 5.6 6.5 7.5 19:
BMAF+MEVs vs BMAF1 Flahes/0212 Lanktoo14 BMAF1+Lenendberapy BMAF1+chemotherapy Mountainstoon Painstyle vs chemotherapy Mountainstoon Painstyle vs chemotherapy Rober0013 BMAF1+chemotherapy vs chemotherapy Rober0013 Buddel = 00%, p = 0.454) BMAF1+Chemotherapy Rober0013 Buddel = 00%, p = 0.555)	1.90 (1.28, 2.81) 2.53 (1.75, 3.64) 1.77 (1.27, 2.32) 2.02 (1.65, 2.47) 2.26 (0.77, 6.58) 1.08 (0.61, 2.27) 1.16 (0.82, 1.64) 1.21 (0.89, 1.63) 1.77 (0.73, 4.29) 2.79 (0.94, 8.25)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596 18/46 13/41	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598 12/45 6/42	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1
BRAF1-MDKI vs BRAF1 Flahen/3012 Laski2014 Laski2014 Brober2015 Sectoral (=-squared + 5.5%, p = 0.365) BRAF1-chemberagy vs chemotherapy Hauschat2009 Flahen/2013 Sectoral (=-squared + 0.0%, p = 0.484) MDK1-chemotherapy vs chemotherapy Recet2013 Graphat214 Sectoral (=-squared + 0.0%, p = 0.555) BRAF1 vs chemotherapy	1 90 (1 28, 2.81) 2 55 (1 75, 3.84) 1.71 (1 27, 3.22) 2 02 (1 65, 2.47) 2 26 (0 77, 6.56) 1 06 (0 51, 2.27) 1.16 (0 82, 1.64) 1.21 (0 89, 1.63) 1.77 (0 73, 4.29) 2.79 (0 94, 8.25) 2.12 (1 07, 4.22)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596 18/46 13/41 31/87	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598 12/45 6/42 18/87	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1 5.5 11.
BRAF1-MEDIs vs BRAF1 Flahen;7012 Lankp014 Lankp014 Lankp014 Lankp014 BRAF1+Chembreragy vs chemotheragy HeaderMedice Hea	1 90 (1 28, 2.8) 2 53 (1 75, 3.8) 2 53 (1 75, 3.8) 2 62 (1 85, 2.47) 2 26 (0 77, 6.58) 1 08 (0 51, 2.27) 1 1.6 (0 82, 1 60, 51, 2.27) 1 1.6 (0 82, 1 63) 1 77 (0 73, 4.29) 2 79 (0 94, 4.25) 2 12 (1 07, 4.22) 14.59 (509, 41, 80)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596 18/46 13/41 31/67 93/187	108/212 111/247 180/352 428/865 6/50 16/135 75/413 96/598 12/45 6/42 18/87 4/63	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1 5.5 11.
BRAF1-MDKI vs BRAF1 Flahen/3012 Laski2014 Laski2014 Brober2015 Sectoral (=-squared + 5.5%, p = 0.365) BRAF1-chemberagy vs chemotherapy Hauschat2009 Flahen/2013 Sectoral (=-squared + 0.0%, p = 0.484) MDK1-chemotherapy vs chemotherapy Recet2013 Graphat214 Sectoral (=-squared + 0.0%, p = 0.555) BRAF1 vs chemotherapy	1 90 (1 28, 2.81) 2 55 (1 75, 3.64) 1.71 (1 27, 3.22) 2.02 (1 65, 2.47) 2.26 (0 77, 6.58) 1.06 (0 51, 2.27) 1.16 (0 82, 1.64) 1.27 (0 89, 1.63) 1.77 (0 73, 4.29) 2.79 (0 44, 62) 2.12 (1 07, 4.22) 14.59 (509, 41.80)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596 18/46 13/41 31/87 93/187 192/337	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598 12/45 6/42 18/87	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1 5.5 11. 5.6 7.3
BRAF+MEX vs BRAFI Flates/3012 Lasks0014 Lasks0014 BRAF+Centembreagy vs Chemotherapy Neucontables/sector / sector / secto	1 90 (1 28, 2.8) 2 53 (1 75, 3.8) 2 53 (1 75, 3.8) 2 62 (1 85, 2.47) 2 26 (0 77, 6.58) 1 08 (0 51, 2.27) 1 1.6 (0 82, 1 60, 51, 2.27) 1 1.6 (0 82, 1 63) 1 77 (0 73, 4.29) 2 79 (0 94, 4.25) 2 12 (1 07, 4.22) 14.59 (509, 41, 80)	140/211 167/248 226/352 574/865 12/51 16/135 84/410 112/596 18/46 13/41 31/67 93/187	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598 12/45 6/42 18/87 4/63 29/338	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1 5.5 11.
Company to the second se	1 90 (1 28, 2.8) 2 53 (1 75, 5.2) 2 62 (1 75, 5.4) 2 62 (1 77, 6.50) 1 68 (0.51, 2.27) 1 1.6 (0.82, 1 63) 1 77 (0 73, 4.29) 2 79 (0.64, 8.25) 2 12 (1 07, 4.22) 1 4.59 (5.09, 41.60) 1 4.11 (0, 51, 21.8)	140/211 167/248 226/325 574/865 12/51 16/135 84/410 112/596 18/46 13/41 31/87 92/187 192/337 106/219	108/212 111/247 180/352 428/865 6/50 15/135 75/413 96/598 12/45 6/42 18/87 4/63 29/38 12/220	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1 5.5 11. 5.6 7.3 6.9
BRAFI-MEDIs vs BRAFI Fallen(7)/012 Lankp014 Lankp014 Lankp014 Lankp0014 RecentDis Sactoral - e-paramet = 5.%, p = 0.350) BRAFI-the-mohtenagy McCentomberagy vs chemotheragy RecentDis Sactoral - e-paramet = 0.%, p = 0.851) BRAFI vs chemotheragy RecentDis Sactoral - e-paramet = 0.0%, p = 0.852) BRAFI vs chemotheragy RecentDis Sactoral - e-paramet = 0.0%, p = 0.852) BRAFI vs chemotheragy RecentDis Sactoral - e-paramet = 0.0%, p = 0.952) BRAFI vs chemotheragy RecentDis BRAFI vs chemotheragy R	1 00 (1 28, 2 4) 2 53 (1 75, 3 24) 1 71 (1 27, 2 32) 2 02 (1 65, 2 47) 2 56 (0 77, 6 56) 1 70 (0 05, 2 27) 1 56 (0 82, 164) 1 27 (0 08, 163) 1 77 (0 73, 4 29) 2 79 (0 94, 6 29) 2 12 (1 07, 4 22) 1 4 59 (509, 41, 60) 1 4 11 (0 11, 21, 85) 0 529 (0 20, 1, 73) 0 59 (0 20, 1, 73)	140211 167/248 226/352 574/865 12/51 16/135 84/410 112/596 18/46 13/41 31/87 192/337 106/219 391/743 6/104	108/212 111/247 180/352 428/855 6/50 15/135 75/413 96/598 12/45 6/42 18/87 4/63 29/36 12/220 4/65 12/220 4/6621	7.4 7.5 7.6 29: 5.6 6.5 7.5 19. 6.1 5.5 11. 5.6 7.3 6.9 19: 5.6
BMAFHABOV vs BMAFI Flahes/0212 Lang2014 Lank20014 Recet2015 Suddbal (+opaarkel = 5.5%, p = 0.366) Suddbal (+opaarkel = 0.5%, p = 0.366) Flahes/02103 Suddbal (+opaarkel = 0.0%, p = 0.464) MDSH-chemotherapy vs chemotherapy Robert2013 Suddbal (+opaarkel = 0.0%, p = 0.325) Suddbal (+opaarkel = 0.0%, p = 0.325) Suddbal (+opaarkel = 0.0%, p = 0.325) MDSH-chemotherapy Hexc/Rad2011 AuArhur2014 Chapman2011 MDSH vs chemotherapy MDSH vs chemotherapy	$\begin{array}{c} 1 \ 00 \ (1 \ 30, \ 2 \ 41) \\ 2 \ 301 \ (1 \ 30, \ 2 \ 41) \\ 2 \ 301 \ (1 \ 30, \ 2 \ 41) \\ 2 \ 301 \ (1 \ 30, \ 20) \\ 2 \ 301 \ (1 \ 30, \ 20) \\ 2 \ 301 \ (1 \ 30, \ 20) \\ 3 \ 301 \ (2 \ 301$	140211 167248 226352 574/865 12/51 16/135 84/410 112/506 18/46 13/41 31/87 93/187 192/337 106/219 391/743	108/212 111/247 180/35 428/865 6/50 15/135 75/413 96/596 12/45 6/42 18/87 4/63 20/338 12/220 45/621	7.4 7.5 7.6 6.5 7.5 19. 6.1 5.5 11. 5.6 7.3 6.9 19:

Figure 4: Pooled hazard ratios for survival and odds ratios for objective response rate by traditional meta-analysis.

2.64 (1.64, 4.25) 1197/2937 637/2702 100.00

 \Leftrightarrow

. Overall (I-squared = 90.8%, p = 0.000) NOTE: Weights are from random effects a

DISCUSSION

Despite major advancements in targeted therapy for MM, however, most patients relapse and show progressive disease after 7 months with treatment of BRAF or MEK inhibition alone. The crucial issue is how to combine targeted inhibition to maximize survival for patients with MM [22] and to ascertain whether early use of a combination of BRAF and MEK inhibitors is the best strategy to forestall resistance [23]. To address this issue, this meta-analysis provides for the first time a comprehensive assessment of the effectiveness of combined BRAF and MEK inhibition with PFS, ORR, and OS. Currently, the network meta-analysis supports the combined BRAF and MEK inhibition is the preferred strategy in patients with MM.

Different measures of survival can be combined in a single analysis on the HR scale, avoiding potential selection bias and loss of information due to only including studies with the same measure or doing separate analyses for different measures [24]. Network metaanalysis is a well established research method capable of comparing different trials using a common reference trial while maintaining the randomisation design [25]. Our network meta-analysis integrated evidence of HR and variation from direct and indirect comparisons while fully preserving randomisation within each trial. From this presented results, direct comparisons to each of the comparator categories were largely similar to the multiple comparison analyses. Specially, the results of network meta-analysis for survival indicated PFS were significantly prolonged in patients who received combined BRAF-MEK inhibition compared with those who received BRAF inhibition (HR: 0.58, 95%CI: 0.51-0.67, *P* < 0.0001) or MEK inhibition alone (HR: 0.29, 95%CI: 0.22-0.37, P < 0.0001), respectively. Combined BRAF-MEK inhibition also improved the OS over BRAF inhibition (HR: 0.67, 95%CI: 0.56-0.81, P < 0.0001) or MEK inhibition alone (HR: 0.48, 95%CI: 0.36-0.65, P < 0.0001). The similar benefit has been found in the ORR, which was superior in combined BRAF and MEK inhibition compared with BRAF inhibition (OR: 2.00, 95%CI: 1.66-2.44, *P* < 0.0001) or MEK (OR: 20.66, 95%CI: 12.22-35.47, P < 0.0001) inhibition alone. These data provide clear evidence for the benefit of BRAF-MEK inhibition combination therapy over BRAF or MEK inhibition alone in prolonging survival and higher response rate. This promising result of combined BRAF and MEK inhibition will allow physicians to select this concurrent inhibition as the preferred therapeutic strategy for patients with MM. We also believe this meta-analysis is the largest and most comprehensive study of initial targeted therapy for MM so far, and provides the highest level of evidence for patients with MM.

The survival benefit of combined BRAF and MEK inhibition, not only patients with MM but also those

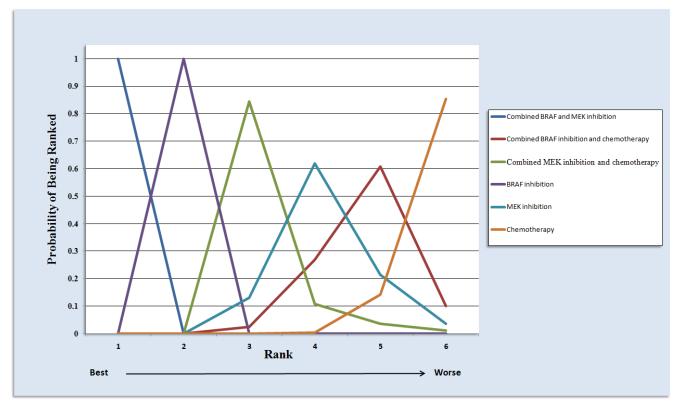


Figure 5: Ranking of treatments in terms of objective response rate by values of surface under the cumulative ranking probability curve.

with operable BRAF mutation-positive melanoma has been reported previously [26]. Furthermore, combining immunotherapy (anti-CTLA4, anti-PD-1, and anti-PD-L1) and targeted therapy (BRAF and MEK inhibitors) may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. Addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib [27]. Therefore, our meta-analysis indicated the combined BRAF and MEK inhibition will be essential for maximizing clinical benefit of combining immunotherapy and targeted therapy. Investigation of the anti-tumor immune response such as CD8 T-cell-rich infiltrate during combined BRAF and MEK-targeted therapy can also yield novel therapeutic strategies [26]. Although the treatment modality is encouraged, the combined BRAF and MEKtargeted therapy is insufficient for long-term durable responses for MM. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant MM has been identified commonly via BRAF amplification and mutations activating NRAS and MEK2 [28]. Therefore, to maximize efficacy and overcome acquired resistance are challenges for rational conduct of clinical trials.

Prospective trials directly comparing single BRAF inhibition to single MEK inhibition are lacking. This meta-analysis is the first to assess the PFS, OS, and OSS between single BRAF and MEK inhibition, and fills a crucial knowledge gap of MAPK pathway. Our present results demonstrated that the single BRAF inhibition had a statistically significantly longer in PFS (HR: 0.53, 95CI%: 0.42-0.68, P < 0.0001), OS (HR: 0.72, 95%CI: 0.56-0.91, P < 0.0001), and higher OSS (OR: 10.34, 95%CI: 6.23-17.60, P < 0.0001) than those in MEK inhibition alone.

This study provides insight into the concurrent inhibition of BRAF and MEK for MM; however, it does have some limitations. First, 5 trials with irrespective of the BRAF mutation were included in this present metaanalysis. However, BRAF mutation status has been hypothesized to predict disease recurrence and response to chemotherapy in melanoma patients [29]. Identification and stratification of constitutively activating BRAF mutations in MM has led to observe homogeneous efficacy for different therapeutic strategies. Second, combined dabrafenib and trametinib was the first combined BRAF and MEK inhibition tested in clinical trials [9]. In our analysis, the combined BRAF and MEK inhibition was mixed by dabrafenib-trametinib and vemurafenibcobimetinib combination. In the future, the characteristics of each combination, and comparison between different combination should be evaluated to identify best combinative inhibition [30]. Furthermore, studies evaluating the combination of BRAF/MEK inhibition with other inhibition such as PI3K/mTOR should be considered. Finally, an important consideration is that this study only analyzes efficacy for combined BRAF and MEK inhibition, in future study toxic effects should be evaluated when comparing those targeted therapies, such as the incidence of pyrexia[31], panniculitis [32], gastrointestinal or ocular toxicity cutaneous adverse events [33].

CONCLUSIONS

Knowing all therapeutic options before therapy initiation will allow physicians to better plan targeted therapy options including sequence or combine inhibition. Given the impressive tumor ORR, PFS and OS, it is clear that combined BRAF and MEK inhibition improves upon and offers the maximum opportunity for those benefits in patients with MM. The first priority of therapeutic efficacy of combined BRAF and MEK inhibition also provides the robust cornerstone for future triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with MM.

MATERIALS AND METHODS

Search strategy and selection criteria

We searched database of PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials, Cochrane Systematic Reviews, and ClinicalTrials. gov for randomized controlled study without year and language restrictions, using the following search algorithm: combined targeted therapy AND melanoma. After the combinations of dabrafenib–trametinib or vemurafenib–cobimetinib have been identified, the keywords of individual inhibition of BRAF (dabrafenib, vemurafenib, sorafenib) and MEK (trametinib, cobimetinib, selumetinib), trial and melanoma were used to search relevant studies according to our previous MAPK therapy review [34].

First, the titles and abstracts of study reports have been identified by the search strategies for eligibility, and then full-text versions of all eligible studies were obtained for data synthesis. All randomized controlled trials that compared at least two arms of different treatment regimens involving targeted therapy were obtained. We required trials to include data for hazard ratio (HR) for PFS and OS, and conformed to the convention of reporting HR showing benefit of experimental drug versus control (HR < 1 favouring the experimental group and > 1 favouring the control group). The ORR defined as complete (CR) or partial response (PR) was according to Response Evaluation Criteria in Solid Tumors (RECIST).

Data synthesis

Three investigators (Mai RO, Zhou SX and Zhong WX) independently reviewed the full article of eligible trials and extracted information into an electronic database. From each eligible trial, the first author, year of publication, sample size, BRAF mutation, Clinical Trials.gov number, randomized phase and treatments of experimental and control group were recorded. Primary and secondary endpoints were also recorded. The primary end point was PFS. Secondary end points included OS and ORR, which were measured according to the Response Evaluation Criteria in Solid Tumors (RECIST) [35]. The reported HR was our preferred end point because HR account for censoring, provide time-to-event information [36]. When HR were not reported we estimated them from summary statistics with the method described by Tierney et al. [37]. We extracted the data for HR and corresponding 95% credibility intervals (CI) for PFS and OS analysis.

Statistical analysis

The traditional pair-wise meta-analysis has been performed by Stata 12 (StataCorp, College Station, TX, USA) for PFS, OS and ORR, respectively. For network meta-analysis, the model applied to analyze the HR of PFS and OS was a Bayesian consistency model as described in Woods et al. [24], with 240000 iterations to obtain the posterior distributions of model parameters and 40000 burn-ins. The LnHR and SE were generated according to the HR and corresponding CI value described by Tierney et al. [37]. HR below one indicated a benefit of the experimental intervention. We compared ORR with odds ratio (OR) with 95% CI using NetMetaXL, which provides an interface for conducting a Bayesian network meta-analysis using WinBUGS 1.4.3 (MRC Biostatistics Unit, Cambridge, UK) from within Microsoft Excel [38]. To assess whether there was inconsistency between direct and indirect comparisons, the pooled HR from the network meta-analysis have been compared with corresponding HR from traditional pair-wise random-effects meta-analysis of direct comparisons as previous described by Liao [36]. Each analysis was based on non-informative uniform with random-effect model accounting heterogeneity among studies. We estimated 95% CI from the 2.5th and 97.5th percentiles of the posterior distribution. The P value from the 95% confidence interval has been evaluated according to the method described by Altman DG [39]. We did sensitivity analyses by repeating the main computations using a fixed-effect method. The reporting of this metaanalysis is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [40].

ACKNOWLEDGMENTS

The authors acknowledge the assistance of Fan Mo (University of British Columbia) for assistance with the literature search.

CONFLICTS OF INTEREST

The authors have declared no conflicts of interest.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (81402616).

REFERENCES

- Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011; 364:2507-2516.
- Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Jr., Kaempgen E, Martin-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012; 380:358-365.
- Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, et al. Survival in BRAF V600mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012; 366:707-714.
- Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, Chodon T, Guo R, Johnson DB, Dahlman KB, Kelley MC, Kefford RF, Chmielowski B, Glaspy JA, Sosman JA, van Baren N, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014; 4:80-93.
- Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012; 367:107-114.
- Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, Reis-Filho JS, Kong X, Koya RC, Flaherty KT, Chapman PB, Kim MJ, Hayward R, Martin M, Yang H, Wang Q, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012; 366:207-215.

- Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, Jones R, Roden C, Chalk CJ, Ardlie K, Palescandolo E, Piris A, MacConaill LE, Robert C, Hofbauer GF, McArthur GA, Schadendorf D, et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol. 2012; 30:316-321.
- Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Grob JJ, Chiarion Sileni V, Lebbe C, Mandala M, Millward M, Arance A, Bondarenko I, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014; 371:1877-1888.
- Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA, 3rd, Falchook G, Algazi A, Lewis K, Long GV, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012; 367:1694-1703.
- Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, Mandala M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Sovak MA, Chang I, Choong N, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014; 371:1867-1876.
- Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L, Chiarion-Sileni V, Drucis K, Krajsova I, Hauschild A, Lorigan P, Wolter P, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015; 372:30-39.
- Chapman PB, Solit DB and Rosen N. Combination of RAF and MEK inhibition for the treatment of BRAF-mutated melanoma: feedback is not encouraged. Cancer Cell. 2014; 26:603-604.
- McDermott DF, Sosman JA, Gonzalez R, Hodi FS, Linette GP, Richards J, Jakub JW, Beeram M, Tarantolo S, Agarwala S, Frenette G, Puzanov I, Cranmer L, Lewis K, Kirkwood J, White JM, et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J Clin Oncol. 2008; 26:2178-2185.
- 14. Hauschild A, Agarwala SS, Trefzer U, Hogg D, Robert C, Hersey P, Eggermont A, Grabbe S, Gonzalez R, Gille J, Peschel C, Schadendorf D, Garbe C, O'Day S, Daud A, White JM, et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009; 27:2823-2830.
- Flaherty KT, Lee SJ, Zhao F, Schuchter LM, Flaherty L, Kefford R, Atkins MB, Leming P and Kirkwood JM. Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol. 2013;

31:373-379.

- Robert C, Dummer R, Gutzmer R, Lorigan P, Kim KB, Nyakas M, Arance A, Liszkay G, Schadendorf D, Cantarini M, Spencer S and Middleton MR. Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. Lancet Oncol. 2013; 14:733-740.
- 17. Gupta A, Love S, Schuh A, Shanyinde M, Larkin JM, Plummer R, Nathan PD, Danson S, Ottensmeier CH, Lorigan P, Collins L, Wise A, Asher R, Lisle R and Middleton MR. DOC-MEK: a double-blind randomized phase II trial of docetaxel with or without selumetinib in wild-type BRAF advanced melanoma. Ann Oncol. 2014; 25:968-974.
- McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, Ribas A, Hogg D, Hamid O, Ascierto PA, Garbe C, Testori A, Maio M, Lorigan P, Lebbe C, Jouary T, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014; 15:323-332.
- Kirkwood JM, Bastholt L, Robert C, Sosman J, Larkin J, Hersey P, Middleton M, Cantarini M, Zazulina V, Kemsley K and Dummer R. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 2012; 18:555-567.
- Carvajal RD, Sosman JA, Quevedo JF, Milhem MM, Joshua AM, Kudchadkar RR, Linette GP, Gajewski TF, Lutzky J, Lawson DH, Lao CD, Flynn PJ, Albertini MR, Sato T, Lewis K, Doyle A, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014; 311:2397-2405.
- 21. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, Garbe C, Gogas H, Schachter J, Linette G, Lorigan P, Kendra KL, Maio M, Trefzer U, Smylie M, McArthur GA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013; 31:616-622.
- 22. Menzies AM and Long GV. Systemic treatment for BRAFmutant melanoma: where do we go next? Lancet Oncol. 2014; 15:e371-381.
- Infante JR and Swanton C. Combined inhibition of BRAF and MEK in melanoma patients. Lancet Oncol. 2014; 15:908-910.
- 24. Woods BS, Hawkins N and Scott DA. Network metaanalysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: a tutorial. BMC Med Res Methodol. 2010; 10:54.
- 25. Song F, Harvey I and Lilford R. Adjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventions. J Clin

Epidemiol. 2008; 61:455-463.

- 26. Johnson AS, Crandall H, Dahlman K and Kelley MC. Preliminary Results from a Prospective Trial of Preoperative Combined BRAF and MEK-Targeted Therapy in Advanced BRAF Mutation-Positive Melanoma. J Am Coll Surg. 2015; 220:581-593 e581.
- Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, Pinheiro EM, Koya RC, Graeber TG, Comin-Anduix B and Ribas A. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Sci Transl Med. 2015; 7:279ra241.
- Long GV, Fung C, Menzies AM, Pupo GM, Carlino MS, Hyman J, Shahheydari H, Tembe V, Thompson JF, Saw RP, Howle J, Hayward NK, Johansson P, Scolyer RA, Kefford RF and Rizos H. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat Commun. 2014; 5:5694.
- 29. Bhatia P, Friedlander P, Zakaria EA and Kandil E. Impact of BRAF mutation status in the prognosis of cutaneous melanoma: an area of ongoing research. Ann Transl Med. 2015; 3:24.
- Luke JJ and Ott PA. New developments in the treatment of metastatic melanoma - role of dabrafenib-trametinib combination therapy. Drug Healthc Patient Saf. 2014; 6:77-88.
- 31. Menzies AM, Ashworth MT, Swann S, Kefford RF, Flaherty K, Weber J, Infante JR, Kim KB, Gonzalez R, Hamid O, Schuchter L, Cebon J, Sosman JA, Little S, Sun P, Aktan G, et al. Characteristics of pyrexia in BRAFV600E/K metastatic melanoma patients treated with combined dabrafenib and trametinib in a phase I/II clinical trial. Ann Oncol. 2015; 26:415-421.
- 32. Galliker NA, Murer C, Kamarashev J, Dummer R and Goldinger SM. Clinical observation of panniculitis in two patients with BRAF-mutated metastatic melanoma treated with a combination of a BRAF inhibitor and a MEK inhibitor. Eur J Dermatol. 2015; 25:177-80.
- 33. Sanlorenzo M, Choudhry A, Vujic I, Posch C, Chong K, Johnston K, Meier M, Osella-Abate S, Quaglino P, Daud A, Algazi A, Rappersberger K and Ortiz-Urda S. Comparative profile of cutaneous adverse events: BRAF/MEK inhibitor combination therapy versus BRAF monotherapy in melanoma. J Am Acad Dermatol. 2014; 71:1102-1109 e1101.
- Cheng Y, Zhang G and Li G. Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Rev. 2013; 32:567-584.
- 35. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D and Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45:228-247.

- Liao WC, Chien KL, Lin YL, Wu MS, Lin JT, Wang HP and Tu YK. Adjuvant treatments for resected pancreatic adenocarcinoma: a systematic review and network metaanalysis. Lancet Oncol. 2013; 14:1095-1103.
- Tierney JF, Stewart LA, Ghersi D, Burdett S and Sydes MR. Practical methods for incorporating summary time-toevent data into meta-analysis. Trials. 2007; 8:16.
- Brown S, Hutton B, Clifford T, Coyle D, Grima D, Wells G and Cameron C. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses—an overview and application of NetMetaXL. Syst Rev. 2014; 3:110.
- 39. Altman DG and Bland JM. How to obtain the P value from a confidence interval. BMJ. 2011; 343:d2304.
- 40. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J and Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009; 339:b2700.