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ABSTRACT

Aberrant activation of Wnt signaling has been implicated in human osteosarcoma, 
which may provide a genetic vulnerability that can be targeted in osteosarcoma 
treatment. To test whether Wnt activation is necessary for osteosarcoma growth, 
colony formation, invasion, and metastasis, we treated human osteosarcoma cells 
with a small molecule inhibitor of Wnt/β-catenin, PRI-724, which suppresses Wnt/β-
catenin-mediated transcription. We found increased protein levels of endogenous 
active-β-catenin in five human osteosarcoma cell lines. Treatment with PRI-724 
was sufficient to inhibit human osteosarcoma 143B and SJSA-1 cell proliferation. 
Suppressed Wnt signaling was confirmed by decreased protein levels of the Wnt target 
Cyclin D1. Furthermore, we revealed significant inhibitory effects on cell migration, 
invasion, and colony formation in the human osteosarcoma cells. Using deposited data 
from next generation sequencing studies, we analyzed somatic mutations and gene 
expression of components in the Wnt/β-catenin pathway. We found somatic mutations 
and upregulated gene expression of many components in the Wnt/ β-catenin pathway, 
indicating activated Wnt signaling. Taken together, our results illustrate the critical 
role of Wnt/β-catenin signaling in human osteosarcoma pathogenesis and growth, 
as well as the therapeutic potential of Wnt inhibitors in the treatment of human 
osteosarcoma.
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INTRODUCTION

Osteosarcoma (OS) is the most common type of 
bone cancer in adolescents and young adults with an 
incidence rate of 4.4 per million people per year in the 
age group of 0-24 years for all races and both genders 
[1, 2]. Molecular genetic studies of osteosarcoma have 
improved our view of the etiology of the disease and 
therapeutic approaches for patients [2–4]. Current disease 
management strategies include surgical resection of all 
clinically visible tumors and systemic chemotherapy [5]. 
The five-year survival rate for localized osteosarcoma 
is about 70% while the survival rate for patients with 
metastatic or recurrent disease is less than 30% [6]. 
Moreover, the outcome for either group of patients with 
OS has not changed in several decades [7]. This highlights 
the need for new second-line treatment options for 
patients.

Recent studies have shown that osteosarcoma 
cancer stem cells play major roles in chemo-resistance, 
tumor recurrence, and metastasis [8, 9]. Cancer stem 
cells share overlapping features with normal stem cells 
and hijack developmental signaling pathways such as 
Wnt and Notch [10]. The Wnt signaling pathway is an 
evolutionarily conserved pathway that controls stem cell 
replication, survival, differentiation, calcium homeostasis, 
cell polarity, and adult tissue homeostasis including in the 
skeletal system [11–16]. The canonical Wnt/β-catenin 
signaling pathway, one of three major Wnt pathways, 
is the best understood. In the presence of Wnt ligands 
that bind to receptors, the accumulation of cytoplasmic 
β-catenin protein enables its translocation to the nucleus, 
where it induces cellular responses via transactivation of 
target genes such as CCND1 [10]. Activation of canonical 
Wnt/β-catenin signaling serves as a genetic driver in 
many types of cancer, including colorectal, lung, breast, 
ovarian, prostate, liver, brain, synovial sarcoma, and 
Schwann cell tumor [12, 17, 18]. Studies that target Wnt/
β-catenin signaling in Wnt-activation-associated cancers 
have opened new avenues for the development of effective 
agents that inhibit Wnt activation [10].

Deregulation of canonical Wnt/β-catenin signaling 
in human osteosarcoma samples and cell lines has been 
described in recent studies [19–23]; however, the role of 
activated Wnt/β-catenin signaling in the pathogenesis 
of osteosarcoma remains poorly understood. The 
development of therapeutic agents specifically targeting 
the aberrant Wnt activation in OS cells is still in its 
infancy. Recently, we presented evidence that Wnt/β-
catenin signaling plays a potential role in osteosarcoma 
development in murine models of the disease [24]. To 
prove that Wnt activation is necessary for osteosarcoma 
growth, colony formation, invasion, and metastasis, we 
first treated human OS cells with PRI-724 (an ICG-001 
derivative), a small molecule inhibitor of CBP (CREB 
binding protein)/β-catenin complex formation, which 

suppresses Wnt/β-catenin-mediated transcription [25]. 
Additionally, we investigated the extent of activated 
Wnt/β-catenin signaling in human osteosarcoma 
samples, whose genome or transcriptome were analyzed 
via high-throughput sequencing and bioinformatics 
approaches. We further provide evidence that constitutive 
Wnt/β-catenin signal activation is common in human 
osteosarcoma, while activated genetic mutations of 
the Wnt pathway components are rare. Altogether, our 
results form the first proof-of-concept study using the 
small molecule PRI-724 for inhibiting CBP-β-catenin 
binding to decrease human osteosarcoma cell growth. 
Our data illustrate the critical role of Wnt/β-catenin 
signaling in human osteosarcoma pathogenesis and 
metastasis and suggest Wnt/β-catenin components as 
promising therapeutic targets for the treatment of human 
osteosarcoma.

RESULTS

Human OS cells sustain high Wnt/ β-catenin 
signaling level

To gain a better understanding of Wnt activation 
signaling pathway in human OS cells, we first performed 
Western blotting to detect active β-catenin, total β-catenin, 
and β-actin protein levels in human OS cell lines 143B, 
Saos-2, SJSA-1 , U-2 OS, and MG-63. Breast cancer lines 
MCF7 and MDA-MB-231 were used as controls for high-
level expression of active β-catenin protein whereas hMSC 
cell line was used as a control for low-level expression of 
active β-catenin protein. As shown in Figure 1, sustained, 
high Wnt/β-catenin signaling activity in human OS cells 
was represented by increased level of active β-catenin 
protein, with 143B showing the highest level. This 
prompted us to examine the potential therapeutic effects 
of novel Wnt inhibitors on human OS cells.

PRI-724 inhibited human OS cell 143B 
proliferation

To test if Wnt activation is necessary for 
osteosarcoma cell proliferation, migration, invasion, 
and colony formation, we treated human osteosarcoma 
143B cells with a small molecule inhibitor of the Wnt/β-
catenin pathway, PRI-724 (also named ICG-001, Figure 
2A). Effects of PRI-724 on many cancer cell lines have 
been studied and it has been applied in preclinical and 
clinical trials [25, 31–34]. However, the therapeutic effect 
of PRI-724 on OS is unknown. First, the proper working 
concentration of PRI-724 on 143B cells viability was 
examined using a cell proliferation assay. Among five 
different concentrations, 25 μM or higher of PRI-724 was 
enough to suppress 143B cell proliferation at all three 
time points of 24 hours (24h), 48h, and 72h (Figure 2B). 
To investigate the effect of PRI-724 on Wnt/β-catenin 
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signaling activity, protein levels of Wnt canonical targets 
including Cyclin D1 and Survivin in cells treated with 
PRI-724 for 24 hours were tested using Western blot. 
As expected, Wnt signaling activity was significantly 
down-regulated in PRI-724 treated cells (Figure 2C, 2D; 
Supplementary Figure 1A & 1B).

PRI-724 inhibited human OS 143B cell 
migration and invasion

In order to understand the effects of PRI-724 on 
cell migration, we first performed a wound healing 
assay. After 18h, PRI-724-treated 143B cells migrated 
significantly slower than those treated with DMSO 
vehicle solution (Figure 3A & 3B). To further examine 
this phenomenon, we employed a Transwell system to 
examine cell migration behavior under PRI-724 treatment. 
Quantification of cells that migrated through the insert 
membrane showed about 50% reduction under PRI-724 

treatment (Figure 3C & 3D). To investigate cell invasion 
in vitro, the inserts in the Transwell system were coated 
with a layer of Matrigel to mimic the extracellular matrix 
of the in vivo tumor environment. Notably, PRI-724 
greatly suppressed 143B cell invasion to about 30% of 
control (Figure 3E & 3F). Altogether, these data imply 
that inhibition of Wnt/ β-catenin canonical signaling with 
PRI-724 may suppress human tumor metastasis in human 
OS patients.

PRI-724 inhibited human OS SJSA-1 cell 
proliferation and metastasis

To validate the observed drug effects on a second 
human OS cell line,, we treated SJSA-1 with PRI-724. An 
inhibitory effect of PRI-724 on SJSA-1 cell proliferation 
with a concentration of 25 μM was observed at 24h, 48h, 
and 72h (Figure 4A). Cyclin D1 and survivin protein 
levels in SJSA-1 cells were significantly reduced after 

Figure 1: Expression analysis of Wnt pathway genes in human OS cells. Western blot analysis of active β-catenin, total β-catenin 
and β-actin proteins in human OS cell lines (143B, Saos-2, SJSA-1 , U-2 OS, MG-63) with human breast cancer cell high-level-expression 
controls (MCF7, MDA-MB-231) and additional human mesenchymal stem cell low-level-expression controls (hMSC). Representative 
blots are shown in the top panels, and densitometric quantification of the blots is shown in the bottom graph. N.D., not detectable.
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24h treatment (Figure 4B; Supplementary Figure 1C & 
1D). PRI-724 suppressed SJSA-1 cell wound closure at 
24 hours compared with the DMSO control treatment, 
in which the gap disappeared (Figure 4C). To dissect out 
the relative contribution from cell proliferation versus 
migration, SJSA-1 cell were starved for 16 hours before 
seeding into Transwell system with or without Matrigel 
to assess the cells’ ability to migrate and invade. Similar 
to 143B cells, 25 μM PRI-724 significantly suppressed 
SJSA-1 cell migration by about 40% (Figure 4D & 4E) 
and invasion by about 30% (Figure 4F & 4G), compared 
to control levels.

PRI-724 inhibited colony formation of human 
OS cells

Colony formation assay is an in vitro technique 
for detecting the ability of a single cell to grow into a 
large colony by clonal expansion. This assay can also 
be employed to evaluate the anti-proliferative activity 
of potential anti-tumor agents. Moreover, colony 
formation closely simulates the pathological process of 
tumor development in vivo [35]. To study the role of 
Wnt canonical signaling in osteosarcoma development, 

we performed a colony formation assay using 143B 
and SJSA-1 cells treated with PRI-724. Crystal violet 
staining clearly showed that treatment with 25 μM PRI-
724 completely inhibited clonogenic ability of 143B 
and SJSA-1 cells (Figure 5A & 5B). Since clonogenic 
activity is a sensitive indicator of undifferentiated 
cancer stem cells (CSCs), this result implies that Wnt 
signaling may be required for CSC self-renewal and 
proliferation in order to maintain CSC population in 
tumor tissues.

Deregulated expression and activating 
somatic mutations of Wnt/β-catenin pathway 
components in pediatric OS

To gain a better understanding of changes in 
individual gene expression of the Wnt signaling pathway 
in context of the whole transcriptome of human OS 
tumor tissues, we re-analyzed a recently published RNA-
seq study of 18 patients (Dataset: GSE99671) [29]. We 
used paired samples that allowed a direct comparison of 
the diseased and normal tissue from the same patient. 
This design substantially reduces biological variability 
and increases statistical power [30]. Our bioinformatics 

Figure 2: Effect of PRI-724 on 143B cell proliferation. (A) Chemical structure of PRI-724 (modified from https://www.selleckchem.
com/). (B) 143B cell proliferation assay upon PRI-724 treatment. (C) Western blotting shows CyclinD1 protein level following PRI-724 
treatment in 143B cells. (D) Quantification of (C).

https://www.selleckchem.com/
https://www.selleckchem.com/
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analysis of paired human OS tumor and normal bone 
tissue samples using edgeR demonstrated significantly-
altered (p < 0.05) expression of many Wnt-pathway-
related genes (Supplementary Table 1). Many of them 
are Wnt direct target genes, overlapping with target genes 
listed on the Wnt homepage (https://web.stanford.edu/
group/nusselab/cgi-bin/wnt/target_genes, last updated 
May, 2018) Among these altered genes, Wnt antagonists 
FRZB, SFRP1, and WIF1 were decreased in tumor 
samples while Wnt ligands WNT5A, FZD1, DVL3 and 
target transcription factors CCND1, MYCB, SNAI2 were 
increased in tumor samples (Figure 6A). Moreover, we 
performed RPKM comparison through Wilcoxon signed-
rank test and found decreased expression of Wnt inhibitor 
genes DKK1 and DKK4 and increased Wnt canonical 
target genes CCND1, CLND1, and FOSL1 (Figure 6B). 
Among the upregulated Wnt target genes, FOSL1 is 
an oncogene that has recently been discovered in lung 
cancer and pancreatic cancer [36]. In addition, survivin 
is an anti-apoptotic protein that regulates cell division 
[37]. We observed significantly increased expression of 
BIRC5, which encodes survivin protein (Supplementary 
Table 1). Consistently, PRI-724 induced significant 
downregulation of survivin in both 143B and SJSA-1 

OS cells (Supplementary Figure 1A-1D), implicating 
that survivin may be responsible for inhibition of colony 
expansion in the colony formation assay (Figure 5). 
Together, our data suggest that hyper-activated Wnt/ 
β-catenin signaling may be a common mechanism of OS 
genesis in patients.

Next generation sequencing (NGS), using either 
whole-genome sequencing or exome sequencing of 
human OS samples, has helped us decipher the genetic 
causes of OS at a much higher resolution and in an 
unbiased fashion. In the past few years, several groups 
have performed NGS analysis on a total of 111 human 
OS samples and their normal tissue pairs [3, 38–43]. 
This analysis has expanded the somatic mutation 
catalogue of human OS. Among a few hundred of the 
mutations found in those samples, many components of 
the Wnt signaling pathway have been identified in one 
or more samples. We re-analyzed all somatic mutations 
related to Wnt pathway genes from three studies (Chen 
et al., 20 WGS [38]; Perry et al., 59 WES [44]; and 
Kovac et al., 31 WES [41]). Somatic mutation types 
and frequency that occurred in more than one study 
are summarized in Table 1. Those genes include MYC, 
APC, CTNND1, CCNE1, CDK4, NF1, DLG2, and 

Figure 3: Effect of PRI-724 on 143B cell migration and invasion. (A) 143B cell wound closure assay upon PRI-724 treatment. 
Red dashed lines indicate cell migration fronts. (C) 143B cell migration in Transwell system with or without PRI-724 treatment. (E) 143B 
cell invasion through Transwells coated with Matrigel, with or without PRI-724 treatment. (B, D, F) Quantification of (A, C, E).

https://web.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes
https://web.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes
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BAP1. Mutation types include copy number alteration 
(amplified or deleted), in frame deletion, structural 
variation, frame shift, copy gain/loss, and point 

mutations (e.g. missense mutation). For example, copy 
number amplification of the oncogene MYC has been 
found in most types of cancer [45, 46]; copy number 

Figure 4: Effect of PRI-724 on SJSA-1 cell proliferation, migration, and invasion.(A) SJSA-1 cell proliferation assay upon 
PRI-724 treatment. (B) Western blotting shows CyclinD1 protein level following PRI-724 treatment in SJSA-1 cells. (C) SJSA-1 cell 
wound closure assay upon PRI-724 treatment. Red dashed lines indicate cell migration fronts. (D) SJSA-1 cell migration in Transwell 
system with or without PRI-724 treatment. (E) Quantification of (D). (F) SJSA-1 cell invasion through Transwells coated with Matrigel, 
with or without PRI-724 treatment. (G) Quantification of (F).

Figure 5: Effects of PRI-724 on 143B and SJSA-1 cell colony formation. (A) Images of crystal violet stained 143B and SJSA-1 
colonies in wells. (B) Images of colonies under 2X magnification.
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loss of the tumor suppressor APC may lead to increased 
nuclear functional β-catenin protein in OS [47–49]. The 
human data is supported by a recent study from Natacha 
et al. where a spontaneous mouse model of OS with 
Apc1638N/+;twist null/+ mutation mimics the human 
disease [50]. However, mutation frequencies of Wnt 
related genes are rather low or rare. Taken together, 
this NGS data sheds light on the importance of Wnt 
signaling in OS initiation, progression, and metastasis, 
implying Wnt canonical pathway as a potential drug 
target for OS treatment.

DISCUSSION

Skeletal genetic studies in both humans and mice 
have established the Wnt/β-catenin signaling pathway as a 
required mechanism for osteoblast lineage determination, 
osteoblast differentiation, and proliferation [11, 13, 15]. 
However, how osteoblast lineage cells transform to 
osteosarcoma CSCs is poorly understood [9, 51]. Emerging 
evidence supports a crucial role for the Wnt/β-catenin 
signaling pathway in the development of OS, but there are 
two opposing hypotheses [3, 52, 53]. The first hypothesis 

Figure 6: Gene expression of Wnt pathway components in human OS tumor samples. (A) Volcano-plot analysis of gene 
expression in human OS and normal tissue control. (n=18 paired samples). Differential transcripts with statistical significance (FDR < 
0.05, -log10 of p-value, y-axis) are shown in red (< 1.5-fold change) or green (> 1.5-fold change) dots. Non-significant genes (FDR > 0.05) 
are shown in black or orange dots (1.5-fold cutoff). Arrows label select genes with significant differential expression. (B) Median RPKM 
values of differentially expressed genes between OS and normal tissue control (n=18 paired samples, median, Wilcoxon signed-rank test, 
*, P< 0.05; **, P<0.01; ***, P<0.001).

Table 1: Somatic mutations of Wnt pathway components in human OS

Genes Mutation types and frequency (Reference)

CDK4 Copy Number Amplified 1/20 (Perry et al. [44]) (Kovac et al. [41])

MYC Copy Number Amplified 2/20 , In Frame Deletion p.Q37del 1/20 (Perry et al. [44])

GNAS Structural Variation 2/34 (Chen et al. [38])

APC Copy Number Loss (Kovac et al. [41])

CTNND1 Copy Number Gain (Kovac et al. [41])

CCNE1 Copy Number Amplified 2/20 (Perry et al. [44]) Copy Number Gain (Kovac et al. [41])

NF1 Structural Variation 2/34 (Chen et al. [38]), Copy Number Deletion 2/20, p.S2309fs frame 
shift deletion (Perry et al. [44])

DLG2
Structural Variation 18/34 (Chen et al. [38]), Copy Number Deletion 2/20, p.E481K 

missense mutation 1/20, p.H27Y missense mutation, p.N96fs frame shift deletion (Perry 
et al. [44]), Copy Number Loss (Kovac et al. [41])

BAP1 Copy Number Loss 38% (Kovac et al. [41])
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is that inactivation of the Wnt/β-catenin pathway activity 
might contribute to osteosarcoma development [21, 
22]. In contrast, other groups have suggested a second 
hypothesis, that activation of the Wnt/β-catenin signaling 
pathway drives osteosarcoma proliferation and growth 
and may serve as a potential novel therapeutic target [19, 
20, 54]. We herein report the results of the first proof-
of-concept study targeting Wnt/β-catenin by applying 
the small molecule compound PRI-724 to inhibit human 
osteosarcoma cell proliferation, migration, invasion, and 
clonogenic ability. Our results show that most OS cell 
lines and human OS tissues present hyperactive Wnt/β-
catenin signaling activity relative to hMSCs, which exhibit 
low levels of endogenous Wnt signaling (Figure 1). Our 
data is consistent with the reports supporting the second 
hypothesis that activated Wnt/β-catenin pathway might 
contribute to osteosarcoma development and renewal of 
the CSCs [19, 20, 54, 55]. Our findings, along with those 
from those other groups, are consistent with the model that 
a hyperactive Wnt/β-catenin pathway may be required for 
OS proliferation, metastasis, and CSC maintenance and 
that activating mutations of the Wnt pathway may serve 
as initiating drivers in a small percentage of human OS 

[19, 20, 54, 55] (Figure 7). However, each aspect of this 
hypothetical model needs to be firmly defined in future 
studies, specifically using in vivo animal models to 
determine whether activated Wnt signaling has a causative 
role in OS development (Figure 7).

A growing body of evidence links Wnt/β-catenin 
signaling to tumorigenesis of many cancer types 
and implicates its role in the development of cancer 
drug resistance [56]. Due to the urgent requirement 
of inhibition of Wnt/β-catenin signaling in cancer 
therapy, a large amount of effort has been dedicated to 
developing therapeutic reagents that target this pathway, 
including both biological and small molecular agents. 
Currently, there are a number of clinical trials using 
potential therapeutic agents that target the Wnt/β-catenin 
pathway, including: OMP18R5, OMP-54F28, LGK974, 
CWP232291, Foxy-5, DKN-01, CGX1321, SM04755, 
ETC-1922159, OTSA101, OMP-54F28, SM04690, 
and PRI-724 [10, 57]. Among these agents, PRI-724 (a 
second-generation compound of ICG-001 and a low 
molecular weight inhibitor) binds specifically to CBP to 
disrupt the interaction between CBP and β-catenin, which 
leads to downregulation of β-catenin/TCF responsive gene 

Figure 7: A hypothetical model of Wnt signaling in OS genesis and development. Constitutive Wnt/β-catenin signal activation 
is common in human osteosarcoma while activating genetic mutations of Wnt pathway components in osteosarcoma are rare. Wnt/β-
catenin signaling may play critical roles in OS proliferation, metastasis and OS cancer stem cell (CSC) maintenance.
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expression, and induces apoptosis in colon cancer cells 
but not normal colonic epithelia cells [25]. In addition to 
colon carcinoma cells, PRI-724 has also been reported to 
exert anti-cancer effects on glioma cells [58, 59], gastric 
cancer cells [31] and leukemia [32]. PRI-724 has also 
been shown to improve chemo-resistance when combined 
with other drugs in hepatocellular carcinoma [33] and 
breast cancer [34]. Encouraging results from a study on 
safety and preliminary efficacy of anti-fibrotic activity 
using PRI-724 in patients with Hepatitis C Virus-related 
Cirrhosis in Phase 1 Trial has also been recently reported 
[60]. This study showed an undetectable influence of PRI-
724 treatment on bone metabolism, which is interesting 
given that the Wnt signaling pathway has been shown 
to be crucial in bone development and homeostasis. 
Currently, PRI-724 has been applied in several clinical 
trials among many malignant cancers, including colon 
cancer, pancreatic cancer and leukemia (NCT01764477, 
NCT01302405, NCT01606579, and NCT02413853). 
In clinical trials, PRI-724 was applied in doses of up to 
905 mg/m2/day (NCT01764477), corresponding to a 
concentration of 55 μM. Thus, the ICG-001 concentrations 
used in the present study (25 μM) in vitro may be 
achievable in patients. Our study using PRI-724 in human 
OS cell lines may pave the way to additional preclinical 
studies in mice and clinical trials on efficacy of the drug 
in patients with OS.

The molecular mechanisms of action of PRI-724, 
which serves as a cytostatic drug, have been explored 
over the past 14 years among many types of cancer cells 
[25, 31-34, 58, 59]. Distinct roles have been reported for 
CBP and for the related transcriptional coactivator p300, 
suggesting that CBP/β-catenin-mediated transcription is 
critical for proliferation/non-differentiation whereas p300/
β-catenin-mediated transcription initiates differentiation 
[61]. Since PRI-724 binds specifically to CBP but not to 
p300 [25], PRI-724 likely has minimal impact on normal 
osteoblast and osteosarcoma cell differentiation. Indeed, 
the recent clinical trial showed undetectable effect of 
PRI-724 treatment on bone metabolism in patients [60]. 
Studies on the therapeutic efficacy of PRI-724/ICG-
001 in pancreatic cancer have revealed one potential 
mechanism that Wnt/β-catenin-dependent inhibition of 
cell proliferation was partially due to downregulation of 
various genes that are involved in cell cycle, e.g. CCNE1, 
E2, and A2 [59, 62]. In the present study, we found 
downregulation of Wnt canonical target Cyclin D1 and 
Survivin in both 143B and SJSA-1 cells after treatment 
with PRI-724 (Figure 2C, 4B; Supplementary Figure 1), 
suggesting that PRI-724 acts in a Wnt-dependent manner 
in the context of osteosarcoma. However, our study cannot 
exclude the possibility that PRI-724 may also inhibit 
OS cancer phenotypes in a Wnt-independent manner, 
which has been studied in cells such as pediatric high-
grade gliomas and multiple myeloma [59, 63]. PRI-724 
inhibition rate reaches a plateau at 25-100 μM (Figure 

2B), suggesting additional mechanism(s) of action to be 
studied in the future. Moreover, PRI-724 combination 
therapy with other drugs such as chemotherapeutic agents 
warrants further study as Wnt plays a role in chemo-
resistance [33, 34].

CSCs are responsible for cancer metastasis and 
reoccurrence, and cannot be easily eliminated by regular 
anti-proliferative drugs [64]. The clonogenic ability is one 
of many properties owned by CSCs, which we are just 
beginning to understand. The inhibitive effect of PRI-724 
on human OS cells in this study warrants future studies 
on how the Wnt signaling pathway regulates stemness 
properties of OS CSCs. On the other hand, although a 
substantial body of evidence underscores the importance 
of the active Wnt/β-catenin pathway in the development 
of OS, so far there is only one available mouse model 
(Apc;twist deficit) based on mutations of Wnt pathway 
[50]. Moreover, how the APC mutation drives OS 
formation is still unknown. Therefore, future mouse 
genetic studies will not only illustrate the mechanisms of 
action of Wnt signaling in OS genesis or metastasis, but 
also provide animal models that can be used in preclinical 
studies of potential drugs including PRI-724 for the 
treatment of OS.

MATERIALS AND METHODS

Cell culture, inhibitor treatment, and Western 
blot analysis

Cell lines MCF7(HTB-22), MDA-MB-
231(HTB-26), 143B(CRL-8303), Saos-2(HTB-85), 
SJSA-1 (CRL-2098), U-2 OS (HTB-96), and MG-
63 (CRL-1427) were all purchased from ATCC and 
maintained in growth medium containing 10% Fetal 
Bovine Serum (FBS) (Fisher Scientific, ES009B) and 
1% Penicillin-streptomycin (Hyclone, SV30010) at 37oC 
under a humidified atmosphere containing 5% CO2. 
Unless stated otherwise, cells in 100 mm tissue culture 
dishes (Fisher Scientific, 430167) were treated with 
25 μM PRI-724 (Selleck, S8262) for 24 hours. Human 
mesenchymal stem cell (hMSCs) (Lonza, Walkersville, 
MD, USA) were cultured in Minimum Essential Medium 
(Gibco, Invitrogen, USA), containing 10% FBS (Gibco, 
Invitrogen, USA) and 100 U/ml penicillin, 100 mg/ml 
streptomycin sulfate (Gibco, Grand Island, NY, USA). 
The corresponding amount of DMSO (vehicle) was used 
as a control. Western blotting was performed according 
to the modified procedure described previously [26]. 
Briefly, cells were lysed by addition of 1X Laemmli 
Sample Buffer (Bio-rad, #1610737). Equal amounts 
of protein from each treatment group were separated o 
4–20% Mini-PROTEAN® TGX™ Precast Protein Gels 
(Bio-rad, #4561094). Proteins were transferred onto 
PVDF membrane (Bio-Rad, # 1704272) using a semi-
dry Bio-Rad Trans-blot apparatus. The membrane was 
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then probed with one of the following primary antibodies: 
mouse anti-Active-β-Catenin (Anti-ABC) (Millipore, 05-
665), rabbit anti-total β-Catenin (GeneTex, GTX101435), 
rabbit anti-Cyclin D1 (Cell Signaling, #2922), mouse 
anti-survivin, and anti-β-actin (Santa Cruz, sc-17779 and 
sc-47778, respectively), and mouse anti-Vinculin (Sigma-
Aldrich V4505). The following secondary antibodies were 
used: horseradish peroxidase-conjugated Goat anti-rabbit 
(Fisher Scientific, PI31460), and Goat anti-mouse (Fisher 
Scientific, PI31436). Proteins were detected using a 
chemiluminescent substrate reagent kit (Fisher Scientific, 
45-002-401) and were quantified with the optical density 
function of ImageJ software (NIH, Bethesda, MD, USA).

Cell proliferation assay

Cells were seeded in a 96-well-plate (Fisher 
Scientific, N8010560) at a density of 2,000 cells per well 
and treated with PRI-724 at 0, 1, 10, 25, 50, or 100 μM for 
24, 48 or 72 hours. 20 μl of 20 μM Sytox Green (Fisher 
Scientific, S7020) was added into each well. The plate was 
incubated in the incubator for 15 mins and read by plate 
reader SpectamaxM5 (Molecular devices, MV02017) at 
ex/em 485/530 with a 515 nm cut off for dead cell reading. 
20 μl of 6% Triton X-100 (Boston BioProducts, P-925) 
was added to each well and the plate was incubated in 
the incubator for 45 mins and was read again for total cell 
reading. The value of total cell reading subtracted by the 
dead cell reading was considered as viable cell reading 
[27]. All experiments were performed with at least three 
independent replicates. P values < 0.05 were considered as 
significant and determined by Student’s t-tests.

Wound healing assay

Cells were seeded in six-well plates and allowed 
to grow to confluence. Using a sterile 200-μl pipette tip, 
a straight scratch was drawn on the monolayer of cells. 
The cells were then washed three times with phosphate 
buffered saline (PBS). Fresh growth medium containing 
25 μM PRI-724 or DMSO was added, and the cells were 
allowed to close the wound. Photographs were taken later 
at the same position of the wound. The width of the scratch 
wound was measured with NIH ImageJ. The relative 
migration at an indicated time point was calculated by 
comparing to the wound width at the initial time point.

Cell migration and invasion assays

The in vitro migration and invasion assays were 
carried out using the 8-μm pore-sized Transwell chamber 
system (Fisher Scientific, 08-771-21). Prior to loading 
the cells into the upper chamber, the lower chamber was 
filled with medium containing 10% FBS with 25 μM PRI-
724 or DMSO. Cells were starved overnight and added to 
serum-free medium containing 25 μM PRI-724 or DMSO 
in the upper chamber at a concentration of 4X104 cells 

per well. For invasion assays, membranes were coated 
with a layer of 0.2 mg/ml Matrigel (Fisher Scientific, 
CB354248). After incubation for 24 hours, the cells on the 
upper surface of the well were removed completely by a 
Q-tip. The wells were fixed in 10% formalin and stained 
with Crystal violet (Fisher Scientific, C581-25). The plate 
with inserts were then imaged with an upright microscope 
(Olympus, IX71) and the relative number of cells that 
migrated through the Transwell pores was quantified using 
NIH ImageJ (NIH, Bethesda, MD, USA) [28].

Colony formation assay

Cells were seeded in six-well plates at a density of 
200 cells per well and cultured in full medium containing 
25 μM PRI-724 or DMSO. Cells were grown for 7 to 
14 days in a humidified, 5% CO2 atmosphere at 37°C 
until there was visible clonal colony formation. Images 
were taken after the colonies were washed gently with 
PBS (0.01 mol/L, pH 7.4), fixed with 10% formalin, and 
stained with 0.5% Crystal violet solution. Assays were 
performed at least three times.

Gene expression analysis and statistical analysis

We used published data (GEO accession dataset: 
GSE99671) [29] from 18 human OS patients with paired 
normal bone tissue samples. edgeR package was used to 
perform differential gene expression analysis of the RNA-
seq data with consideration of pair factor as described 
previously [30]. Comparison of Reads Per Kilobase 
Million (RPKM) between normal and tumor samples 
was performed using the Wilcoxon signed-rank test for 
paired data. Benjamini–Hochberg procedure was applied 
to adjust p values for multiple comparisons. A two-
tailed Student’s t-test was used to compare two groups 
(PRI-724 vs. DMSO) in quantifications of Western blot, 
proliferation assays, wound healing assay, and Transwell 
migration and invasion assays. Results were considered 
significant at p < 0.05.
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