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PTEN loss is associated with prostate cancer recurrence and 
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ABSTRACT

Background: Prostate cancer (PCa) with loss of the tumor suppressor gene PTEN 
has an unfavorable prognosis. DNA methylation profiles associated with PTEN loss 
may provide further insights into the mechanisms underlying these more aggressive, 
clinically relevant tumors.

Methods: The cohort included patients with clinically localized PCa. Samples 
taken from the primary tumor were used to determine PTEN genomic deletions 
using FISH, and to analyze epigenome-wide DNA methylation profiles. Patients were 
followed for PCa recurrence on average for 8 years after diagnosis.

Results: The study included 471 patients with data on PTEN loss, and the 
frequency of hemi- and homozygous PTEN loss was 10.0% and 4.5%, respectively. 
Loss of PTEN was associated with a significantly higher risk of recurrence (any vs. no 
PTEN loss; HR = 1.74; 95% CI: 1.03–2.93). Hazard ratios for hemi- and homozygous 
loss were 1.39 (95% CI: 0.73–2.64) and 2.84 (95% CI: 1.30–6.19), respectively. 
Epigenome-wide methylation profiling identified 4,208 differentially methylated CpGs 
(FDR Q-value < 0.01) in tumors with any versus no PTEN loss. There were no genome-
wide significant differentially methylated CpGs in homo- versus hemizygous deleted 
tumors. Tumor methylation data were used to build a methylation signature of PTEN 
loss in our cohort, which was confirmed in TCGA, and included CpGs in ATP11A, GDNF, 
JAK1, JAM3, and VAPA.
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Conclusion:Loss of PTEN was positively associated with PCa recurrence. Prostate 
tumors with PTEN loss harbor a distinct methylation signature, and these aberrantly 
methylated CpG sites may mediate tumor progression when PTEN is deleted.

INTRODUCTION

Phosphatase with tensin homology (PTEN) is one 
of the most frequently inactivated tumor suppressor genes 
in human cancers [1]. PTEN controls phosphoinositide 
3-kinase (PI3K) signaling, which has critical roles in 
diverse cellular functions [2, 3]. As such, PTEN is involved 
in cell proliferation and survival, energy metabolism, and 
cellular architecture [4].

In PCa, loss of PTEN has been consistently 
associated with more aggressive disease features and a 
worse prognosis [5–16]. Estimates of PTEN loss range 
from less than 20 percent for clinically localized prostate 
tumors to more than 40 percent for metastatic castrate-
resistant PCa [14, 17]. PTEN loss also frequently co-
occurs with the TMPRSS2:ERG gene fusion, which exists 
in about half of all localized prostate tumors in men of 
European ancestry, suggesting that both somatic events 
might cooperate in prostate tumorigenesis [18, 19]. Loss 
of PTEN is now recognized as one of the major driving 
events in PCa [20].

Tumors with PTEN loss have significantly altered 
gene expression profiles. Saal et al. previously generated 
a tumor transcriptomic signature of PTEN loss in breast 
tumors [21]. The signature included 246 genes and the 
most significant differentially expressed gene was PTEN 
itself. The PTEN loss-like mRNA expression signature 
was also strongly associated with PTEN status based on 
copy number levels in PCa [22]. Further, in independent 
datasets of breast, prostate, and bladder carcinoma, the 
signature significantly correlated with worse patient 
outcomes [21].

Tumor epigenomic changes, in particular changes 
at the DNA methylation level, may also contribute to the 
progression of PCa [23]. Several studies have identified 
individual differentially methylated CpG sites and 
methylation signatures (combination of CpGs) associated 
with PCa recurrence and metastatic progression [24–26]. 
Recent research on PCa also revealed that methylation 
patterns are more tightly associated with patient outcomes 
than other genomic characteristics (e.g., copy number 
alterations, single nucleotide variants) [27].

Therefore, differential DNA methylation profiles 
in prostate tumors with PTEN loss may help to better 
understand the mechanisms that drive cancer progression 
in the absence of PTEN. To gain insights on this issue, 
we examined the association of PTEN loss with PCa 
recurrence in a cohort of patients diagnosed with clinically 
localized disease, and used methylome data from the same 
cohort to profile tumors with and without PTEN loss. As 
far as we know, this is the first large study to investigate 

PTEN status according to prostate cancer recurrence and 
epigenome-wide changes in tumor DNA methylation 
profiles.

RESULTS

Patient characteristics

There were 403 patients (85.6%) with PTEN intact 
tumors, and 47 (10.0%) and 21 (4.5%) patients with hemi- 
and homozygous PTEN loss, respectively (Table 1). 
PTEN loss was associated with higher Gleason scores 
(P = 0.03) and regional pathological stage (P < 0.01) as 
well as occurrence of the somatic TMPRSS2:ERG gene 
fusion (P < 0.01). There was no significant association 
between PTEN loss and race (European-American vs. 
African American; P = 0.4), but there were only 2 African-
American patients with hemizygous PTEN loss and 3 
African- American patients with homozygous PTEN loss.

PTEN loss and prostate cancer recurrence

The association between PTEN loss and recurrence-
free survival was investigated (Figure 1, Table 2). In total, 
87 patients developed PCa recurrence during a mean 
follow-up of 8 years (Table 1). Compared to patients 
with PTEN intact tumors, those with homozygous PTEN 
deleted tumors had an increased risk of recurrence (HR 
= 2.84, 95% CI: 1.30, 6.19). Hemizygous loss was not 
significantly associated with recurrence. For any versus 
no PTEN loss, the HR was 1.74 (95% CI: 1.03, 2.93). 
The median time to recurrence in men with intact PTEN, 
hemizygous PTEN loss, and homozygous PTEN loss was 
7.3, 7.8, and 5.7 years (P = 0.5), respectively.

Subgroup analyses revealed significant associations 
between homozygous PTEN loss and PCa recurrence 
for patients with local pathological stage (HR = 4.30), 
higher Gleason score (8–10) tumors (HR = 5.95), and 
TMPRSS2:ERG fusion-positive tumors (HR = 3.26; Table 2). 
The association was not studied in the subgroup of patients 
with TMPRSS2:ERG fusion-negative tumors because only 
one patient in this subgroup had homozygous PTEN loss.

An ROC analysis revealed that a clinical model 
based on Gleason score and pathological stage had an 
AUC for PCa recurrence of 0.72. Loss of PTEN only 
had an AUC for recurrence of 0.69. After additionally 
including PTEN loss in the multivariable model with 
Gleason score and stage, the AUC improved slightly 
(0.73). Larger AUC improvements were observed in 
patients with local pathological stage (+3%), and in 
patients with higher Gleason scores of 8–10 (+4%).



Oncotarget84340www.impactjournals.com/oncotarget

Table 1: Selected patient characteristics by tumor PTEN status in the radical prostatectomy patient cohorta

PTEN status

Intact (n = 403) Hemizygous loss (n = 47) Homozygous loss (n = 21)

No. % Mean 
(SD)

No. % Mean 
(SD)

No. % Mean 
(SD)

P-valueb

Age at diagnosis 
(years)

58.4 
(7.2)

57.3 
(6.6)

56.2 
(7.2)

0.10

Race 0.36

  Caucasian 367 91.1% 45 95.7% 18 85.7%

  African-American 36 8.9% 2 4.3% 3 14.3%

Pathological stagec < 0.01

  Local 295 73.2% 31 66.0% 8 38.1%

  Regional 108 26.8% 16 34.0% 13 61.9%

Gleason score 0.03

    ≤6 207 51.4% 21 44.7% 5 23.8%

  7(3+4) 141 35.0% 13 27.7% 12 57.1%

  7(4+3) 30 7.4% 6 12.8% 3 14.3%

  8–10 25 6.2% 7 14.9% 1 4.8%

PSA at diagnosis 
(ng/mL)

0.13

  0–3.9 65 17.1% 8 17.0% 3 16.7%

  4–9.9 248 65.3% 25 53.2% 11 61.1%

  10–19.9 49 12.9% 8 17.0% 3 16.7%

    ≥20 18 4.7% 6 12.8% 1 5.6%

TMPRSS2:ERG fusion 
status

< 0.01

  Negative 192 50.3% 14 29.8% 1 4.8%

  Positive 190 49.7% 33 70.2% 20 95.2%

Recurrence 0.04

  No 256 78.8% 26 70.3% 8 53.3%

  Yesd 69 21.2% 11 29.7% 7 46.7%

a Ninety-three patients had missing data on PTEN status. Patient characteristics were not substantially different for these 
patients.
b P-value from either a T-test or chi-square test
c Local: pT2, N0/NX, M0; regional: pT3–T4 and/or N1, M0
d Of the patients with PCa recurrence, 17 had metastatic-lethal progression.
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PTEN loss and tumor DNA methylation levels

Tumor epigenome-wide methylation differences 
between PTEN deleted (any loss) and PTEN intact tumors 
were studied. In total, 4,208 differentially methylated CpGs 
were identified (False Discovery Rate [FDR] Q-value < 
0.01), of which 1,924 (46%) were hypermethylated in PTEN 
deleted tumors (Figure 2A). Of the 4,208 differentially 
methylated CpGs, 485 had a mean methylation difference 
of more than 10%. Genome-wide methylation levels in 
homozygous versus hemizygous PTEN deleted tumors 
were also compared. This analysis, however, revealed no 
significant differentially methylated CpGs between the two 
subsets (FDR Q-value = 1). Therefore, further methylation 
analyses involved contrasting tumors with any PTEN 
loss versus those with intact PTEN. Figure 2B shows the 
proportion of differentially methylated CpGs by genomic 
region, which showed that hypermethylated CpGs were 
more commonly found in gene promoter regions; and 
hypomethylated CpGs were more commonly found in gene 
body and intergenic regions.

The Elastic Net method was used to identify a 
panel of CpGs that, in combination, distinguished PTEN 
deleted from PTEN intact tumors in our cohort. In total, 
eighteen CpGs were identified (Table 3; Figure 2C). 
These CpGs were in 13 genes: ATP11A, BAT4, CALD1, 

CSNK2B, GDNF, GNB1, JAK1, JAM3, RHOBTB1, 
RNF144A, SEZ6, VAPA, and YPEL3; several of which 
have previously been implicated in cancer development 
and progression. The 18 CpGs were combined into a 
signature, as described in the methods. This signature 
was tested in the PCa TCGA dataset, which showed 
that both hemi- and homozygous deleted tumors have 
significantly higher levels of the signature compared 
to PTEN intact tumors (Figure 2D; P < 0.001). An 
ROC analysis showed an AUC of 0.87 for any PTEN 
loss versus intact PTEN (Figure 2E). The classification 
performance was similar in patient subsets based on 
tumor TMPRSS2:ERG fusion status.

Pathway analysis

The 4,208 differentially methylated CpGs in PTEN 
deleted versus PTEN intact tumors were in 1,908 genes. 
Gene Set Enrichment Analysis (GSEA) showed that this 
gene list was enriched for genes in different pathways 
related to signaling, DNA repair, immune functions, 
and developmental processes (Figure 2F). Previously, 
Vivanco and colleagues identified gene expression 
differences in PTEN wild-type versus PTEN knockdown 
cell lines [28]. Epidermoid carcinoma, non-small-cell 
lung carcinoma, and mammary adenocarcinoma cells 

Figure 1: Loss of PTEN in relation to recurrence-free survival in the radical prostatectomy cohort.
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were used to generate the PTEN knockdown cell lines by 
performing retroviral transduction with a small hairpin 
RNA targeting PTEN. Comparing our findings to the sets 
of differentially expressed genes after PTEN knockdown 
in vitro (Molecular Signatures Database gene sets: PTEN_
DN.V1_DN, PTEN_DN.V1_DN) showed significant 
gene set enrichment (GSEA, FDR Q-value < 0.0001). 
As such, these findings provide further evidence that the 
differentially methylated genes found in our study are at 
least partially regulated by PTEN. One of the upregulated 
genes after PTEN knockdown in vitro was JAM3, which 
was also identified in our methylation signature of PTEN 
loss. Further, Ouyang et al. studied gene expression 
differences in prostate tissue from PTEN mutant mice 
(Nkx3.1; Pten) [29]. One of the 20 upregulated genes in 
that study (gene set: OUYANG_PROSTATE_CANCER_
PROGRESSION_UP) was JAK1, which is also one of the 
18 genes included in the methylation signature of PTEN 
loss.

DISCUSSION

This prospective study showed a positive association 
between homozygous PTEN loss and PCa recurrence after 
radical prostatectomy for clinically localized PCa. To 
gain further insights into the mechanisms that contribute 
to tumor progression in PCa patients with genomic 
deletion of PTEN, tumor DNA methylation profiles were 
investigated. The study revealed significantly different 
genome-wide methylation profiles in tumors classified by 
PTEN status, and identified a methylation signature that 

was uniquely associated with PTEN loss. The differentially 
methylated CpG sites were in biological pathways related 
to cell signaling (e.g., estrogen), DNA repair, and immune 
processes.

Several studies have shown that PTEN loss is 
associated with worse recurrence-free survival [5–16]. 
While some studies found that both homozygous and 
hemizygous loss increase the risk of adverse outcomes, 
two large, recent studies suggest a stronger association 
for homozygous loss. A study by Lotan et al. showed that 
patients with hemizygous and homozygous deleted tumors 
had a relative risk for recurrence of 1.24 (95% CI: 0.93, 
1.65) and 1.66 (95% CI: 1.22, 2.24), respectively [12]. A 
study by Ahearn et al. evaluated the association of PTEN 
loss with PCa mortality and found that homozygous (HR 
= 1.9), but not hemizygous PTEN loss was significantly 
associated with a worse prognosis [5]. This suggests that 
tumors with a higher mass of PTEN-null cells have a 
higher propensity for metastatic spread [12].

The study by Lotan et al. also compared PTEN 
status to standard clinical-pathological parameters for 
predicting PCa recurrence (e.g., Gleason score, tumor 
stage) [12]. This showed that adding data on PTEN loss 
to the standard clinical model only modestly improved the 
AUC for recurrence (0.72 vs. 0.74). A similar result was 
seen in our study (0.72 vs. 0.73). However, predictors that 
result in small shifts in the AUC may be clinically useful 
and can improve clinical decision making for individual 
patients. Further, molecular tumor markers such as 
PTEN status might be more important and result in larger 
AUC improvements when detected in biopsy specimens 

Table 2: Age-adjusted hazard ratios and 95% confidence intervals for the association of PTEN loss with prostate 
cancer recurrence and by selected disease features

Patients No. 
patients

No. 
events

PTEN status

Intact 
(ref.)

Hemizygous loss Homozygous loss Any loss

HR HR (95% CI) HR (95% CI) HR (95% CI)

All 377 87 1.00 1.39 (0.73, 2.64) 2.84 (1.30, 6.19) 1.74 (1.03, 2.93)

Local pathological stage 270 41 1.00 1.96 (0.86, 4.50) 4.30 (1.31, 14.18) 2.35 (1.15, 4.83)

Regional pathological 
stage

107 46 1.00 0.87 (0.31, 2.45) 1.23 (0.43, 3.49) 1.02 (0.47, 2.21)

Lower Gleason score (≤7) 318 58 1.00 1.23 (0.53, 2.89) 2.17 (0.78, 6.03) 1.49 (0.75, 2.96)

Higher Gleason score 
(8–10)

59 29 1.00 0.80 (0.26, 2.46) 5.95 (1.58, 22.50) 1.28 (0.51, 3.21)

TMPRSS2:ERG fusion-
negative

161 37 1.00 2.26 (0.78, 6.54) – – 2.05 (0.70, 6.00)

TMPRSS2:ERG fusion-
positive

198 45 1.00 1.20 (0.53, 2.72) 3.26 (1.43, 7.45) 1.75 (0.93, 3.29)
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from patients for whom data on pathological stage are 
unavailable.

Experimental studies have shown that tumor somatic 
PTEN loss in combination with the TMPRSS2:ERG gene 
fusion may result in accelerated tumor progression [18, 
19]. The gene fusion exists in about half of all localized 
tumors in Caucasian men and is therefore the most 
common somatic alteration in PCa [6]; but presence of 
the fusion alone is not associated with adverse patient 
outcomes [30]. Several epidemiological and clinical 
investigations have studied the association between PTEN 
loss and adverse PCa outcomes in subgroups stratified by 
TMPRSS2:ERG fusion status, and the results are mixed. 
While some studies, including our study, found a stronger 
association of PTEN loss with recurrence among patients 
with TMPRSS2:ERG fusion-positive tumors [12, 15, 
16], other studies reported a stronger association with 

prognosis in the TMPRSS2:ERG fusion-negative subgroup 
[5, 8, 10]. Importantly, one of the largest studies on PTEN 
loss and PCa recurrence to date by Lotan and coworkers 
[12], showed that PTEN loss was more strongly associated 
with recurrence-free survival among patients that harbored 
the gene fusion; but the authors also noted that there was 
no statistically significant interaction between PTEN loss 
and TMPRSS2:ERG fusion status. Thus, further research 
on this topic in larger datasets is needed.

Tumor DNA methylation profiling in our study 
revealed that tumors with hemi- and homozygous 
PTEN loss harbor significant genome-wide methylation 
alterations compared to PTEN intact tumors. These 
differentially methylated CpGs were enriched in 
genes involved in different biological processes such 
as signaling, DNA repair, immune functions, and 
developmental processes. The study also showed that 

Figure 2: Prostate tumor DNA methylation profiles by PTEN status. (A) Volcano plot for the differential methylation analysis 
of any PTEN loss versus intact PTEN. Each point in the figure represents a CpG site. Differentially methylated CpGs are shown in green 
or red (FDR Q-value < 0.01; n = 4,208). The CpGs shown in red have a mean methylation difference (PTEN loss vs. intact PTEN) of more 
than 10% (n = 485). CpGs with a higher mean methylation level in PTEN deleted tumors (i.e., hypermethylated) have a positive methylation 
M-value (logit transformation of β-value) difference, and hypomethylated CpGs have a negative M-value difference. (B) Proportion of 
significantly hypermethylated (red bars) and hypomethylated CpGs (blue bars) by genomic region. As a comparison, the proportion of all 
measured CpGs (n = 480K) by genomic region is shown (green bars). (C) Heat map (supervised) of the 18 CpG sites selected using Elastic 
Net in our cohort. This panel of 18 CpGs optimally distinguished PTEN deleted from PTEN intact tumors. The rows of the heatmap are the 
CpG sites and the columns are the tumor samples, which were grouped based on PTEN status. Methylation β-values (figure legend; range 
0−1) were used and the highest methylation levels are shown in red. The number of patients with intact PTEN, hemizygous PTEN loss, and 
homozygous PTEN loss was 388, 46, and 19, respectively. The rows were clustered based on Euclidean distance. (D) Epigenetic signature 
of PTEN loss in TCGA. The 18 differentially methylated CpGs, identified in our cohort, were combined into a single epigenetic signature, 
which was then tested in the TCGA dataset. As expected, tumors with PTEN loss had significantly higher levels of the signature compared 
to PTEN intact tumors. (E) ROC curve for classifying any PTEN loss versus intact PTEN using the methylation signature in TCGA. Values 
for the AUC and associated 95% confidence interval are shown in the figure. (F) Top-ranked GSEA hallmark gene sets, which showed 
enrichment for the genes with differentially methylated CpGs (1,908 genes).
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many of the significant CpGs were in genes known to 
be differentially expressed after PTEN knockdown with 
RNAi, suggesting that these genes might be epigenetically 
regulated in PCa. One of the most significantly enriched 
pathways was related to estrogen signaling. Interestingly, 
previous research found that somatic PTEN mutations 
occur more frequently in tumors with estrogen receptor 
overexpression [31], and that estrogen receptor β (ERβ) 
is targeted for repression in PCa caused by PTEN deletion 
[32]. Our study also showed that DNA methylation 
profiles were similar in homozygous versus hemizygous 
deleted tumors. Thus, although some epidemiological, 
studies including our study, showed that patients with 
homozygous loss have a worse prognosis than patients 
with hemizygous loss, these prognostic differences appear 
to be unrelated to any substantial methylomic changes.

Using feature selection, we identified an 18-CpG 
methylation signature that classified tumors with PTEN 
loss. Importantly, this molecular classifier was validated 
using TCGA data where it accurately distinguished PTEN 
deleted from PTEN intact tumors. As the methylation 
signature is a genomic correlate of PTEN loss, the 
CpGs/genes included in the signature may provide 
mechanistic insights into the pathways altered in PTEN 
deleted tumors that contribute to PCa progression. The 
13 genes (18 CpGs) in the PTEN signature have roles 
in various pathways, including cell signaling; and some 

of the genes have known roles in cancer development 
(e.g., JAK1, GDNF). Several of the genes have also been 
implicated in PCa or PTEN biology. For example, VAPA 
is an endogenous RNA that regulates PTEN levels in a 
microRNA-dependent manner [33].

Other noteworthy genes with CpGs in the epigenetic 
signature include ATP11A, JAM3, and GDNF. A previous 
study from our group identified a CpG biomarker in 
ATP11A for predicting metastatic-lethal PCa [26]. The 
gene encodes a membrane ATPase. JAM3 was also 
included in the tumor mRNA expression signature of 
PTEN loss in breast cancer generated by Saal et al. [21], 
thereby providing further evidence of a link between 
this gene and PTEN activity. Aberrant methylation of 
JAM3 has also been associated with cervical cancer [34]. 
Finally, GDNF has been shown to be elevated in PCa 
reactive tumor stroma and, as such, may contribute to 
tumor growth and invasion [35]. Therefore, for several of 
the genes that encompass CpGs in the signature there is 
plausible evidence for a role in prostate tumorigenesis.

Important strengths of the present study include 
the relatively large sample size and long-term follow-up 
for recurrence. Our methylation findings were confirmed 
using data from TCGA. A potential limitation of the study 
is that only a small subset of patients with PCa recurrence 
progressed to metastatic-lethal PCa so this critical 
endpoint could not be analyzed separately.

Table 3: Eighteen top-ranked CpG sites for classifying prostate tumors with any PTEN loss versus intact PTEN

CpG ID Chr. Gene name Genetic 
location

Epigenetic 
location

Mean β 
PTEN intact

Mean β 
PTEN deleted

Mean β 
difference

Elastic Net 
coefficient

cg05877648 6 Island 0.09 0.12 0.03 2.30

cg12150066 1 GNB1 TSS1500 S_Shore 0.09 0.14 0.05 1.16

cg17422460 6 BAT4;CSNK2B Body;TSS1500 N_Shore 0.23 0.32 0.08 0.90

cg04121624 10 RHOBTB1 Body;TSS200 N_Shore 0.27 0.36 0.08 0.32

cg12444684 1 JAK1 5’UTR N_Shore 0.17 0.27 0.10 0.13

cg27106909 16 YPEL3 1stExon;5’UTR N_Shore 0.18 0.27 0.09 0.06

cg16166160 6 Island 0.18 0.26 0.08 0.05

cg03640071 11 JAM3 3’UTR 0.69 0.76 0.07 0.01

cg12930882 5 GDNF Body 0.69 0.62 0.08 -0.10

cg20554353 7 S_Shore 0.79 0.72 0.07 -0.14

cg02072532 14 0.87 0.79 0.07 -0.31

cg13657981 7 CALD1 Body 0.79 0.73 0.06 -0.31

cg16937410 3 0.60 0.51 0.09 -0.73

cg20670923 18 VAPA Body S_Shore 0.41 0.34 0.07 -0.85

cg10162251 2 RNF144A 5’UTR 0.89 0.84 0.04 -0.90

cg04838191 2 0.87 0.81 0.06 -0.90

cg20708856 13 ATP11A Body S_Shore 0.84 0.77 0.07 -0.92

cg24742298 17 SEZ6 Body N_Shelf 0.80 0.72 0.08 -1.47
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In conclusion, PTEN loss in PCa was associated 
with significantly altered epigenome-wide tumor 
methylation profiles. As PCa with PTEN loss has a more 
aggressive phenotype with shorter relapse-free survival, 
our findings suggest that aberrant DNA methylation may 
mediate tumor progression when PTEN is deleted.

MATERIALS AND METHODS

Study population

The cohort includes 566 PCa patients who 
underwent radical prostatectomy as primary therapy 
for clinically localized adenocarcinoma of the prostate. 
These patients were previously enrolled in population-
based studies of PCa among residents of King County, 
WA (diagnosed in 1993–1996 or 2002–2005) [36, 37]. 
Clinical information and survival data were collected from 
the Seattle-Puget Sound Surveillance, Epidemiology, and 
End Results (SEER) Program cancer registry. Prostate 
cancer recurrence status was determined from two detailed 
follow-up surveys that were completed by patients in 
2004–2005 and in 2010–2011, with review of medical 
records or physician follow-up as needed. A patient was 
considered to have disease recurrence based on: 1) a post-
surgery PSA value of 0.2 ng/mL or greater; 2) metastatic 
progression on a bone scan, MRI, CT or biopsy; or 3) PCa-
specific death. The mean follow-up time for biochemical 
recurrence was 8 years. The Fred Hutchinson Cancer 
Research Center Institutional Review Board approved 
the study and all participants signed informed consent 
statements.

Fluorescence in situ hybridization (FISH)

Loss of PTEN was assessed using a FISH assay 
as described previously [38]. Hemizygous PTEN loss 
was defined as a ratio of the total number of PTEN 
signals divided by the total number of signals from the 
chromosome 10 centromere (CEP10) ≤ 0.75. Homozygous 
PTEN loss was defined as PTEN/CEP10 ≤ 0.2. In total, 71 
patients had missing data on PTEN status. An additional 
24 patients had PTEN gain; and these patients were not 
considered in the present analyses. FISH was also used to 
determine TMPRSS2:ERG gene fusion status, as described 
previously [39].

DNA isolation, methylation profiling, and data 
preprocessing

Formalin-fixed paraffin-embedded prostate tumor 
tissue blocks were obtained from radical prostatectomy 
specimens and used to make hematoxylin and eosin 
stained slides, which were reviewed by a PCa pathologist 
to confirm the presence and location of prostate 
adenocarcinoma. For each patient two 1-mm tumor 

tissue  cores  from  the  dominant  lesion  enriched with  ≥ 
75% tumor cells were taken for DNA purification. The 
RecoverAll Total Nucleic Acid Isolation Kit (Ambion/
Applied Biosciences, Austin, TX) was used to extract 
DNA, which was then shipped to Illumina (Illumina, Inc., 
San Diego, CA) for methylation profiling.

Tumor DNA was bisulfite converted. The Infinium 
HumanMethylation450 BeadChip array (Illumina) 
was used for methylation profiling. Methylation data 
were normalized using subset-quantile within array 
normalization (minfi in Bioconductor) [40], and batch 
effects were removed using ComBat [41]. Methylation 
β-values were calculated, which represent the percentage 
of DNA methylation at a CpG site. Methylation M-values 
were also calculated, which are a logit transformation of 
the β-values [42].

Genome annotation was based on the Illumina 
protocol. A gene promoter region was defined as: 
TSS1500, TSS200, 5’UTR, and 1stExon. Across the 96-
well plates, we incorporated blind duplicate (n = 16) and 
replicate (n = 2) samples. A sample was excluded if less 
than 95% of the CpG sites for that sample on the array 
were detected with a detection P-value (probability of a 
CpG being detected above the background level defined 
by negative control probes) < 0.05. Further, CpG sites with 
a detection P-value of > 0.01 were excluded. Correlation 
coefficients for duplicate samples were 0.96–0.99. The 
correlation coefficient for the replicate samples was 0.99. 
After data preprocessing, there were 523 patients in the 
radical prostatectomy cohort with DNA methylation data.

The cancer genome atlas (TCGA)

The TCGA PCa dataset included 333 patients, with 
oversampling of men with higher Gleason score tumors 
[43]. Allelic copy number derived from ABSOLUTE 
was used [44], along with relative copy number to 
determine hemizygous and homozygous PTEN deletions, 
as described previously [43]. In total, there were 50 
homozygous PTEN deleted tumors, 43 hemizygous PTEN 
deleted tumors, and 240 PTEN intact tumors. Level 1 
Infinium HumanMethylation450 data from TCGA (https://
gdc.cancer.gov) were preprocessed as described above.

Statistical data analysis

Cox proportional hazards regression and Kaplan-
Meier analyses (survival in R) were used to evaluate the 
association of PTEN loss with PCa recurrence. In addition 
to the overall association, analyses were stratified by 
pathological stage, Gleason score, and TMPRSS2:ERG 
fusion status. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) were computed. A ROC (Receiver 
Operating Characteristic) analysis was performed 
(pROC in R) to compare the prognostic classification 
performance (recurrence vs. no recurrence) of PTEN loss 
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versus Gleason score (6, 7[3+4], 7[4+3], or 8–10) and 
pathological stage (local: pT2, N0/NX, M0; regional: 
pT3–T4 and/or N1, M0).

Epigenome-wide tumor methylation data (478,998 
CpG sites) were analyzed to find differential methylation 
profiles between PTEN deleted (any PTEN loss) and 
PTEN intact tumors, and between hemi- and homozygous 
deleted tumors. Differentially methylated CpGs were 
identified using linear models (limma in Bioconductor).

Elastic Net regularization (glmnet in R; [45]) 
was used to identify a reduced panel of CpGs that, in 
combination, distinguished prostate tumors based on 
PTEN status. All measured CpG sites were used as 
input for the limma and glmnet analyses except CpGs 
in 10q22.1–10q25.1 (n = 7,604), which were excluded 
because this genomic region is deleted in tumors with 
PTEN loss [46]. Five-fold cross-validation and the AUC 
(Area Under the Curve) criterion were used to determine 
the optimal tuning parameter for classification. After 
variable selection using Elastic Net, the selected CpGs 
were combined into an epigenetic signature as follows: 
signaturei = Σ β ×=  Xg

n
1 g gi , where g is the CpG site; n is 

the number of CpGs; βg is the Elastic Net coefficient for 
CpG g; and Xgi is the methylation value for CpG g in the 
tumor of patient i.

A heatmap of the data was generated using pheatmap 
in R. Gene Set Enrichment Analysis (GSEA) was done 
using the Molecular Signatures Database (http://software.
broadinstitute.org/gsea) by comparing our findings to the 
hallmark [47], and oncogenic signatures (C6) gene sets. 
All other analyses were done using R.
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