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ABSTRACT
Epithelial-to-mesenchymal transition (EMT) endows epithelial cells with 

enhanced motility and invasiveness, allowing them to participate in many physiological 
and pathological processes. Epithelial-to-mesenchymal transition contributes to 
the generation of circulating tumor cells (CTCs) in epithelial cancers because it 
increases tumor cell invasiveness, promotes tumor cell intravasation and ensures 
tumor cell survival in the peripheral system. Although the contribution of epithelial-
to-mesenchymal transition to tumor cell invasiveness has been confirmed, the role 
epithelial-to-mesenchymal transition plays in metastasis remains debated. As a 
favorable material for a “liquid biopsy”, circulating tumor cells have been shown 
to have promising values in the clinical management of tumors. Furthermore, 
an increasing number of studies have begun to explore the value of CTC-related 
biomarkers, and some studies have found that the expression of EMT and stemness 
markers in circulating tumor cells, in addition to CTC detection, can provide more 
information on tumor diagnosis, treatment, prognosis and research.

INTRODUCTION

Epithelial cancer metastasis is a multi-step process 
that includes a loss of intercellular connections, the 
invasion of basal membrane and surrounding tissues, 
intravasation into venous or lymphatic vessels that 
generates circulating tumor cells (CTCs), survival in 
the peripheral system, extravasation and proliferation 
at secondary sites. In this metastatic cascade, epithelial-
to-mesenchymal transition (EMT) is believed to play an 
important role [1–3]. EMT is characterized by decreased 
epithelial properties and increased mesenchymal 
attributes and has been implicated in a number of 
physiological processes, such as embryonic development 
and pathological conditions, including organ fibrosis and 
cancer progression [2–4]. 

One important aspect of EMT’s role in cancer is that 
EMT contributes to the generation of CTCs. CTCs are 

tumor cells released into blood and/or lymphatic vessels 
that can circulate in the human body, which are predestined 
sources of metastasis as the “seeds” in Paget’s “seed and 
soil” hypothesis [5]. Moreover, EMT has been shown 
to contribute to tumor resistance [6–8] and may also be 
related to tumor cell stemness [9, 10]. However, because 
of technical restrictions and a lack of convincing in vivo 
evidence, the role of EMT in cancer metastasis remains 
debated. Some believe that EMT is of great importance in 
the formation of metastases, whereas others hold that the 
effect of EMT might have been overestimated, given the 
lack of convincing evidence. In fact, some have suggested 
that EMT is not required for metastasis [6, 8, 11–13]. 

Because of their crucial role in metastasis, CTCs 
have had attracted much attention since their discovery. 
Furthermore, the development of CTC detection 
technology has facilitated the real-time dynamic 
monitoring of cancer by using CTCs as a material for 
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“liquid biopsies”, which are superior to traditional 
biopsy [14, 15]. In the last decade, the detection and 
enumeration of CTCs have been shown to provide 
information on prognosis, metastasis, therapeutic efficacy 
and chemoresistance in several cancer types [16–20]. 
Recent studies of CTCs are not limited to the detection 
and enumeration of these cells, and increasing efforts have 
been made to elucidate the molecular features of CTCs 
and the potential values of these biomarkers, among which 
EMT markers are of great interest.

In this review, we summarize the mechanisms 
underlying EMT and their role in CTC generation, shed 
light on the controversial role of EMT in metastasis, and 
review recent advances that have been made in the clinical 
application of EMT markers in CTC detection.

THE MECHANISMS UNDERLYING EMT 
AND THEIR ROLE IN METASTASIS

The mechanisms underlying EMT 

Epithelial-to-mesenchymal transition (EMT) is a 
multi-step process involving many molecular and cellular 
changes, including the down-regulation of epithelial 
proteins such as E-cadherin, claudins and cytokeratins 
and the up-regulation of mesenchymal proteins, such as 
N-cadherin, fibronectin and vimentin, which endow the 
cell with increased motility and invasiveness [1–3, 21].

These molecular changes during EMT are regulated 
by transcription factors called EMT-inducing transcription 
factors (EMT-TFs), including Snail 1, Snail 2 (Slug), 
ZEB1, Twist, TCF4, and FOXC2 [22, 23]. In addition 
to EMT-TFs, some extracellular molecules in the tumor 
microenvironment (TGF-β, FGF, EGF, HGF, Wnt, Notch, 
Hedgehog, etc.) and related pathways (MAPK, PI3K,  
NF-κB, Wnt/β-catenin, Notch, etc.) are thought to 
induce EMT [23–27]. Moreover, hypoxia results in the 
accumulation of hypoxia-inducible factor (HIF), and  
HIF-1α activates EMT-TFs, such as Twist and Snail, to 
induce EMT [28, 29] (Figure 1).

EMT plays a role in a number of physiological 
processes and pathological conditions. EMT has been 
categorized into three types based on function [2]: type I 
is involved in embryonic development, type II participates 
in wound healing and fibrosis, and type III is associated 
with cancer progression, which is the focus of this review.

EMT promotes CTC generation

The generation of CTCs includes several steps: the 
detachment from the tumor mass, invasion of the basal 
membrane and surrounding tissues, entry of vessels and 
survival in the peripheral system. Specifically, EMT 
and related regulatory networks primarily promote 
CTC generation in three aspects: i) increase tumor cell 

invasiveness, ii) promote tumor cell intravasation and 
iii) facilitate tumor cell survival in the peripheral system. 
(Figure 1)

As shown in Figure 1, the EMT regulatory networks 
involves not only molecular changes directly regulated by 
EMT-TFs but also other related factors and pathways, such 
as HIF, TGF-β and VEGF-A, which together promote the 
ultimate generation of CTCs. 

Epithelial cells are immobile due to the precise 
regulation of strong cell-cell and cell-extracellular matrix 
adhesions, which consist of adherent junctions, tight 
junctions and desmosomes, and the well-constructed 
cytoskeleton. During EMT, the key components of 
intercellular junctions, such as E-cadherin, claudins, 
occludins and desmosomes, are directly down-regulated 
by EMT-TFs, such as Snail, Slug and SIP1 [22, 30–32]. 
Some cell and animal assays also demonstrated that 
the reorganization of adhesive molecules is associated 
with increased invasiveness [33–35]. The phenotype 
switch from epithelial to mesenchymal during EMT also 
involves the reconstruction of the cytoskeleton, which 
changes their morphology to a spindle-like shape that is 
appropriate for migration [36]. In addition to adhesive 
molecules, EMT-TFs can also induce the expression of 
matrix metalloproteinases (MMPs), which facilitate the 
degradation of the basal membrane and surrounding tissues 
[37–39]. Remarkably, some important extracellular factors, 
such as TGF-β, FGF and Wnt, participate in the regulatory 
network by inducing EMT and/or the expression of MMPs 
[23–27, 29, 40, 41]. The mechanisms of hypoxia in this 
regulatory network are similar to those of extracellular 
factors, as shown in Figure 1 [28, 29, 42, 43]. 

The EMT regulatory network also promotes 
angiogenesis and facilitates cancer cell intravasation. 
Specifically, EMT-TFs such as Snail and Slug, can 
promote blood vessel formation by inducing the 
expression of vascular endothelial growth factor A 
(VEGF-A) in subcutaneous xenograft tumor models  
[44–46]. Other factors in the regulatory network, such 
as Notch and HGF, can also promote angiogenesis via 
a similar mechanism [47–49]. Remarkably, VEGF and 
HIF1-α were also expressed on CTCs [50]. Moreover, 
EMT-induced and TGF-β-induced proteases, especially 
MMPs, can also promote angiogenesis and intravasation 
[51, 52]. Moreover, newly formed, tumor-associated 
vessels are often malformed and leaky, which facilitates 
tumor cell invasion [53]. Specifically, EMT-TFs or 
EMT-related factors have been shown to enhance 
transendothelial migration, which further supports that 
EMT promotes tumor cell intravasation [54, 55].

CTCs do not easily survive in the peripheral system 
because they may encounter strong anoikis signals and 
chemotherapy or radiotherapy. Nevertheless, EMT can 
facilitate tumor cell survival in the peripheral system by 
allowing cancer cells to avoid apoptosis, anoikis, and 
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senescence and promote drug resistance [56, 57]. EMT-
TFs, such as Snail, Slug, Twist and SIP1, can protect 
CTCs from anoikis by disturbing normal apoptotic 
cascades, resisting senescence and/or cooperating with 
TrkB [58–62]. EMT-TFs can reportedly endow tumor 
cells with resistance to chemotherapy and radiotherapy in 
several cancer types [6, 8, 63]. For example, Snail and 
Slug directly contribute to cisplatin resistance in ovarian 
cancer [64, 65]. Moreover, the inhibition of EMT can 
restore the chemosensitivity, indicating that the EMT-
TFs may be a potential target for the treatment of therapy 
resistance [7, 66, 67].

Remarkably, many regulatory loops exist between 
the components of the EMT regulatory network [43, 45, 
68–71], as shown in Figure 1. For example, EMT-TFs can 
induce the expression of MMPs, whereas some proteases 
can reverse EMT [69, 70]. VEFG-A plays a similar role 
in EMT [45, 71]. In summary, the EMT-related regulatory 
network is an interactive, integrated and precisely regulated 
network due to the association between EMT, extracellular 

factors (TGF-β, FGF, Notch, etc.) and hypoxia, which are 
all important aspects in cancer progression. As the central 
part of the regulation network, EMT, accompanied by 
the related factors and pathways, plays an important role 
in the generation of CTCs by promoting cell invasion, 
angiogenesis, intravasation, therapy resistance and survival.

EMT’s role in metastasis

The contribution of EMT to tumor cell invasiveness 
and CTC generation has been confirmed, but its role in 
the metastatic cascade remains debated. Two metastatic 
models involving EMT have been proposed (Figure 2). 
The first and most widely known model proposes that 
cancer cells must first undergo EMT to become invasive 
and generate CTCs and then undergo the reverse of EMT, 
MET (mesenchymal-to-epithelial transitions), to restore 
epithelial properties after extravasation into secondary sites 
and facilitate metastatic growth [72–75]. This process of 
EMT and subsequent MET is very common and important 

Figure 1: The mechanisms underlying the role of EMT in CTC generation. (A) The EMT-related regulatory network. EMT-
inducing transcription factors (EMT-TFs), including Snail 1, Snail 2 (Slug), ZEB1, and Twist, play a central role in this network and 
regulate molecular changes during EMT. Some important extracellular molecules in the tumor microenvironment, such as TGFβ, HGF, 
FGF, Wnt and Notch, bind to their respective receptors to induce EMT and are consequently also important components in the EMT 
regulatory network. Hypoxia, a significant aspect in cancer progression, triggers EMT and participates in the EMT regulatory network. 
Notably, the EMT regulatory network is an interactive, integrated and precisely regulated network that is involved  in the generation of 
CTCs. (B) EMT promotes CTC generation by increasing tumor cell invasiveness, promoting tumor cell intravasation and facilitating tumor 
cell survival in the peripheral system.
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during embryonic development and some postnatal gland 
development. Thus, this process can be expected to play 
a role in cancer progression [73, 76]. Specifically, this 
EMT/MET metastatic model can explain the fact that 
the histopathological features of secondary tumor sites 
resemble those of the primary site [73]. Furthermore, the 
switch between EMT and MET and phenotypic plasticity 
have been reported in some cancer types [77, 78]. For 
example, Chao et al. have reported that E-cadherin was re-
expressed due to MET and may play a role in promoting 
cell survival at metastatic sites [79, 80]. Although clinical 
studies have indicated that MET occurs in distant sites, a 
lack of in vivo evidence of MET at distant sites reduces 
the credibility of this model. In recent years, increasing 
evidence from both in vitro and in vivo experiments has 
supported this metastatic model. For example, Chaffer  
et al. used a series of bladder cancer cell lines to study the 
role MET in the metastasis cascade and found that reversion 
to epithelial characteristics in a mesenchymal-like cancer 
cell line, i.e., regaining an epithelial phenotype, was 
favorable in the latter stages of the metastatic cascade; this 
finding confirmed the suspected role of MET in secondary 
cancer growth [81, 82]. Moreover, Banyard, J and colleagues 
used an in vivo cycling strategy to select metastatic cancer 
cells from the lymph nodes of mice bearing orthotopic 

DU145 human prostate tumors and observed a shift to 
an epithelial phenotype in progressive lymphatic cancer 
cells, providing evidence for spontaneous MET in vivo 
[83]. Ocana, O and colleagues induced MET by silencing 
Prrx1, an EMT inducer, and found that the loss of Prrx1 was 
required for migratory cells to colonize a secondary organ 
in vivo [84]. Tsai, JH et al. came to a similar conclusion: 
they found that turning off Twist 1, an important EMT-TF, 
to allow the reversion of EMT was essential for cancer cells 
to form metastases in distant sites [85].

However, the classic EMT/MET model has 
been challenged in recent years [11–13]. Although the 
importance of EMT in endowing cancer cell with enhanced 
invasiveness and motility has been confirmed, the role of 
MET in the metastatic cascade remains debated. Increasing 
evidence suggests that MET plays a role in the latter 
stages of the metastatic cascade, but some researchers 
question the necessity of MET to complete colonization 
at distant sites. Based on the concept of “collective” or 
“cohort” migration [86], they introduced the second 
metastatic model discussed in this review: epithelial-
like and mesenchymal-like cancer cells can cooperate 
with each other during collective migration to achieve 
metastasis instead of undergoing the difficult process of 
EMT and subsequent MET [86, 87]. EMT is not an on/

Figure 2: EMT and metastatic models. EMT/MET model: epithelial cancer cells must first undergo EMT to become invasive and 
motile and generate CTCs; CTCs circulate around the body and extravasate to distant sites; after extravasation to secondary sites, cancer 
cells must undergo the reverse process of EMT, MET (mesenchymal-to-epithelial transition) to restore epithelial properties, allowing 
them to ultimately colonize distant sites and form metastases. Collective migration model: instead of migrating as a single cell, cancer 
cells that have undergone various degrees of EMT coexist as multicellular clusters and migrate collectively, with the more motile invasive 
mesenchymal-like cells aggregating at the invasive front of multicellular clusters to “pave” the way, whereas epithelial-like cells retain their 
epithelial properties, follow behind and seize the opportunity to proliferate and colonize at distant sites after extravasation. Notably, the 
EMT/MET model and collective migration model may be not independent or diametrically opposed. Tumor cells may switch between the 
two mechanisms under certain circumstances, or the two mechanisms may synergistically effect metastases. 
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off switch, and the phenotypic transition from epithelial 
to mesenchymal in cancer cells consequently would give 
rise to many hybrid phenotypes that possess the properties 
of both cell types [88]; this phenotype plasticity facilitates 
collective migration. The collective migration model 
hypothesizes that many hybrid phenotypes coexist as 
multicellular clusters and migrate collectively, with the 
more motile invasive mesenchymal-like cells aggregating 
at the invasive front of multicellular clusters to “pave” the 
way, whereas epithelial-like cells follow behind and seize 
the opportunity to proliferate and colonize distant sites 
after extravasation [87]. Accordingly, multicellular cancer 
fragments, so-called tumor micro-emboli or CTC clusters, 
have long been observed in the clinic and correlate 
with distant metastasis [13, 89]. Moreover, several  
in vivo studies support this model. For example, Tsuji and 
colleagues established an animal model by subcutaneously 
and intravenously injecting EMT-derived cells and non-
EMT cells, respectively, and found that EMT-derived 
cells were able to invade the blood stream but failed to 
establish lung metastases, whereas non-EMT cells could 
not invade but were able to establish lung metastases 
when injected intravenously. Surprisingly, lung metastases 
formed when a mixture of EMT-derived and non-EMT 
cells were co-inoculated subcutaneously, suggesting 
cooperation between epithelial and mesenchymal cancer 
cells during metastasis [90, 91]. Banyard, J and colleagues 
also reported that the epithelial-like DU145-LN4 cell line 
invaded in a collective migration pattern into lymphatic 
vessels in their model [92]. Fischer, KR et al. established 
an in vivo EMT lineage tracing system to monitor EMT in 
a triple-transgenic mouse model, in which breast-to-lung 
metastasis occurred spontaneously and EMT was “visible”, 
if it occurred. Notably, lung metastases mainly consisted 
of non-EMT cancer cells, which maintained epithelial 
phenotype during metastasis in their study, contradicting 
the original EMT/MET hypothesis [6]. Surprisingly, when 
they inhibited EMT by overexpressing miR-200, lung 
metastases were not affected, leading them to conclude 
that EMT was not required for lung metastasis [6]. Zheng, 
XF drew a similar conclusion: the suppression of EMT 
by deleting Snail or Twist in genetically engineered 
mouse models of pancreatic ductal adenocarcinoma 
(PDAC) did not affect the development of metastases 
[8], which also suggested that EMT does not play a role 
in metastasis. However, the contribution of EMT to the 
metastatic cascade should not yet be discounted because 
EMT is complex and precisely controlled. Therefore, the 
effects of EMT in vivo cannot be easily and completely 
eliminated. And the role of partial EMT may have been 
underestimated in these aforementioned models.

Notably, although the classic EMT/MET model 
and collective migration model are conflicting, these 
two models both state that the mesenchymal phenotype 
is more invasive and motile than the epithelial phenotype 
and that the epithelial phenotype favors proliferation 

compared with the mesenchymal phenotype. Thus, 
the assumption that the tumor takes advantage of 
the mesenchymal phenotype in the early stage of the 
metastatic cascade, when invasion is the main concern, 
and then exploits the proliferative epithelial phenotype to 
complete colonization is reasonable. The classic EMT/
MET model hypothesizes that cancer cells must undergo 
this phenotype transition twice, i.e., EMT and subsequent 
MET, to ensure the optimal phenotype in each stage of 
the metastatic cascade. Thus, EMT plays a central role 
in metastasis. Conversely, collective migration model 
cleverly circumvents these troublesome phenotype 
transitions and proposes that epithelial and mesenchymal 
phenotypes cooperate to accomplish metastases. Thus, 
EMT assists the metastatic cascade in this model. In fact, 
Chaffer et al., who support the EMT/MET model [82], 
and Tsuji et al., who back the collective migration model 
[90], reported similar but slightly different results, which 
has led to disagreement. Currently, identifying the correct 
model may be difficult because both are supported by an 
increasing body of evidence. Specifically, both single-
cell motility and collective migration are observed in the 
circulation. Interestingly, Giampieri, S et al. found that 
TGFβ-1 acted as a switch between the cohesive phenotype 
and single cell motility via a transcriptional program, and 
collective migration seems more practical in lymphatic 
metastasis than blood-borne metastasis [93]; however, 
this finding warrants further confirmation. Banyard, J 
also hypothesized that EMT may not be essential during 
lymphatic metastasis [75]. Thus, the EMT/MET model 
and/or collective migration model may not be independent 
or diametrically opposed; the two models may co-exist 
and synergistically facilitate the metastatic cascade. 
Tumor cells may switch between the two mechanisms 
under certain circumstances or prefer a mechanism for a 
specific type of metastasis to maximize their colonization 
of distant sites.

CLINICAL APPLICATIONS OF EMT 
MARKERS IN CTCS DETECTION

Circulating tumor cells are highly heterogeneous, and 
the molecular features of CTC often differ by subpopulation 
[94–96]; thus, these subpopulations may play different 
roles in cancer progression. A better understanding of 
CTC heterogeneity has demonstrated that the molecular 
features of different CTC subpopulations need to be 
studied to identify the “evil” CTC subpopulations that 
are responsible for lethal cancer progression. Therefore, 
an increasing number of studies no longer focus on 
simple CTC enumeration and have begun to explore the 
genotypic and phenotypic characterization of CTCs. For 
example, researchers have investigated the value of HER 
2 expression on CTCs in patients with breast cancer  
[97, 98], AR gene status of CTCs in prostate cancer [99], 
EGFR mutations in lung cancer and KRAS mutations in 
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colorectal cancer [100, 101]. Besides these cancer type 
specific biomarkers, EMT markers can be promising 
biomarkers of CTCs in different cancers. EMT can 
endow cells with enhanced invasiveness and motility, 
drug-resistance, and even stemness properties [2, 30], 
the CTC subpopulations positive for EMT markers may 
be responsible for cancer progression [76, 96]. Thus, 
delineating the expression of EMT markers in CTCs is of 
great clinical interest. 

EMT is believed to generate CTCs with stem 
cell properties [9], and some studies reported that the 
overexpression of EMT markers in CTCs is often accompanied 
by the expression of stem cell markers, such as ALDH 1 and 
CD133 [102–104]. Below, we review the expression of EMT 
markers in CTCs and focus on their clinical applications while 
also examining stem cell markers (Supplementary Table 1).

EMT markers

The molecular changes during EMT are 
characterized by the down-regulation of epithelial proteins 
and up-regulation of mesenchymal proteins, and these 
changes are regulated by EMT-TFs and related pathways, 
as stated above. Thus, we can categorize the EMT markers 
into three types: i) epithelial makers, ii) mesenchymal 
markers and iii) regulators (Table 1).

Epithelial markers are molecular biomarkers that 
are highly expressed in epithelial cells but not expressed 
or expressed at low levels in mesenchymal cells, such as 
EpCAM, E-cadherin, cytoketatins, and Zonula occludins 
(ZO). Epithelial markers are often used to detect CTCs and 
ensure their epithelial origin. Epithelial cellular adhesion 
molecule (EpCAM) is an adhesive molecule between 
epithelial cells and believed to be involved in epithelial 
malignancies [105]. EpCAM has long been widely used 
to detect and enumerate CTCs [106, 107], but EpCAM 
expression is down-regulated if the cancer cells have 
undergone EMT because it is an epithelial marker. Thus, 
the use of EpCAM for CTC detection is likely to exclude 
CTCs that have undergone EMT [108]. Cytokeratins 
(CKs) are a group of intermediate filaments that comprise 
the cytoskeleton and have also been used to detect CTCs. 
Like EpCAM, CKs are down-regulated during EMT and 
may be not appropriate for CTC detection when CTCs 
have undergone EMT [108]. Moreover, E-cadherin is an 
essential component of adherent junctions, and ZOs are 
proteins of tight junction, which are both involved in the 
maintenance of epithelial intercellular adhesions and are 
down-regulated during EMT [109, 110]. 

Although mesenchymal markers, such as 
N-cadherin, vimentin, and fibronectin, are highly 
expressed in mesenchymal cells expressed at low levels 
in epithelial cells, they are up-regulated during EMT, 
and the expression of mesenchymal markers by CTC 
can reflect their EMT status. N-cadherin and E-cadherin 
both belong to the cadherin family. During EMT, 

N-cadherin is overexpressed, whereas E-cadherin is down-
regulated—this switch from E-cadherin to N-cadherin 
is a hallmark of CTCs that have undergone EMT [111]. 
Vimentin is a component of intermediate filaments whose 
expression facilitates the reconstruction of the cancer cell 
cytoskeleton during EMT and endows the cancer cell with 
a spindle-like shape suitable for migration [112, 113].

EMT-TFs and their related pathways regulate 
the molecular changes during EMT, and these elements 
themselves can also be markers of EMT, such as Twist, 
Snail, ZEB and Akt/PI3K. Twist 1 is a transcription factor 
that acts on the E-box of E-cadherin to down-regulate the 
expression of E-cadherin, which is associated with cancer 
progression and a useful marker to evaluate the EMT 
status of CTCs [114]. The mechanisms of Snail 1, Slug and 
ZEB 1 and their role in EMT are similar to that of Twist 
[22]. The PI3K/AKT/m TOR pathway is an important 
regulator of the cell cycle and related to proliferation, 
cancer and EMT [115]. As the central elements in this 
pathway, PI3K and Akt have already been used in some 
studies as mesenchymal markers of CTCs [102, 116]. 

The detection of these EMT markers in CTCs would 
help to evaluate their EMT status and distinguish CTC 
subpopulations.

The expression of EMT markers in CTCs

In recent years, an increasing number of studies 
have attempted to detect EMT markers in CTCs. For 
example, Kasimir-Bauer, S et al. studied three EMT 
markers (Twist 1, Akt2, and PI3Kα) and one stem-
cell marker (ALDH 1) in CTCs from 502 patients with 
primary breast cancer and detected at least one of the 
EMT markers and ALDH 1 in up to 72% and 46% of 
the CTC-positive group, respectively [102]. Kallergi, G 
et al. reported that over 80% of patients with both early 
and metastatic breast cancer harbored CTCs expressing 
phospho-Akt and phsopho-PI3K [117]. Moreover, Aktas, 
B et al. detected EMT markers and stem cell markers in 
62% and 69% of the CTC-positive patients with metastatic 
breast cancer, respectively [103], and Li, YM et al. showed 
that the 80.4% and 84.8% of CTC isolated from patients 
with hepatocellular carcinoma express vimentin and Twist, 
respectively [118]. Similar findings have been reported in 
colorectal cancer, pancreatic cancer and prostate cancer 
[119–122].

Based on these data, we can conclude that EMT and 
stem cell markers are frequently overexpressed in CTCs, 
irrespective of cancer type. Remarkably, in addition to 
detecting EMT markers and ALDH 1 in the CTC-positive 
group, Kasimir-Bauer detected these respective markers in 
18% and 5% of the CTC-negative group [102]. Aktas, B 
also reported the expression of EMT markers and stem cell 
markers in the CTC-negative group [103]. Gradilone, A  
et al. reported similar findings [123]. The three studies all 
relied on EpCAM-based capturing methods, i.e., AdnaTest 
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and CELLection, to detect CTC and consequently may 
have missed CTC subpopulations that had undergone 
EMT, indicating that epithelial marker-based (such 
as EpCAM) detection methods may be unsuitable for 
detecting EMT CTCs. This notion is supported by 
several studies showing that combining EMT markers 
with epithelial markers increases the CTC detection rate 
compared with the AdnaTest approach [124]. 

The expression of EMT markers in CTC 
correlates with tumor stage and metastasis

Kallergi, G et al. investigated the expression of 
the EMT markers Twist 1 and vimentin in CTCs from 
25 patients with metastatic and 25 patients with early 
breast cancer and identified Twist 1(+) and vimentin(+) 
CTCs in 73% and 77% of patients with early breast 
cancer, respectively, whereas CTCs from all patients with 
metastatic breast cancer were positive for these markers 
[125]. Papadaki, M.A et al. also detected high ALDH1 
expression (ALDH 1high) and nuclear Twist (Twistnuc) 
CTCs in 80% of patients with metastatic breast cancer 
but only 30.8% of patients with early breast cancer 
[126]. Moreover, Gradilone, A et al. evaluated the 
expression of vimentin, fibronectin and ALDH 1 in CTCs 
from 92 female patients with breast cancer and found 
that 91% (10/11) of the triple-positive samples (ALDH1/
vimentin/ fibronectin) were isolated from patients with 
stage IV disease, and the expression of ALDH 1 by CTCs 
significantly correlated with the stage of disease [123]. Li, 
Y.M and colleges confirmed the correlation between Twist/

vimentin expression and portal vein tumor thrombus or 
cancer stage in hepatocellular carcinoma, but they failed 
to find similar positive results with EMT-TFs, ZEB1, 
ZEB2 and Snail [118]. Nevertheless, Alonso-Alconada L 
et al. found that ZEB1 expression correlated with lymph 
node metastasis in endometrial cancer [127]. Similarly, 
Kulemann B reported this relationship in pancreatic 
ductal adenocarcinoma (PDCA) [120]. Although several 
meaningful findings have been made in several cancer 
types, Kasimir-Bauer, S et al. did not identify a correlation 
between EMT marker expression and cancer stage in their 
study [102].

The above studies suggest that the expression 
of EMT and stem cell markers in CTC may indicate a 
later stage and more aggressive disease but the clinical 
relevance of these findings needs to be further evaluated 
in more prospective trials.

The expression of EMT markers in CTC 
correlates with therapeutic response

Aktas, B and colleges evaluated the expression 
of EMT and stem cell markers in CTCs isolated from 
patients with breast cancer during follow-up and detected 
EMT marker and ALDH1 expression in only 10% and 5% 
of responders, respectively, whereas these percentages 
were much higher in non-responders (62% and 44%, 
respectively) [103]. Mego, M et al. also reported that 
EMT marker positivity correlated with a lack of response 
to therapy and relapse [129]. Satelli, A et al. defined a 
threshold of 5 EMT CTCs to reflect therapeutic response 

Table 1: The categorization of EMT markers
Categorization Marker Features

Epithelial markers EpCAM Down-regulated during EMT.
Often used to detect CTCs.E-cadherin

Cytokeratins (CK)
Zonula occludins (ZO)

Mesenchymal markers N-cadherin Highly expressed in mesenchymal cells. The switch from 
E-cadherin to N-cadherin is a hallmark of EMT.

Vimentin Highly expressed in mesenchymal cells, induces 
mesenchymal morphology.

Fibronectin Regulates cell shape.
Regulators Twist 1 bHLH factor, represses E-cadherin expression.

Snail 1 Zinc-finger protein, directly represses E-cadherin expression.
Snail 2 (Slug)
ZEB 1/ZEB 2 Zinc-finger E-box-binding homeobox protein, transcriptional 

repressor.
Akt and PI3K The PI3K/AKT/m TOR pathway is associated with 

proliferation and EMT.
FoxC 2 Transcriptional activator, induces EMT.
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in patients with metastatic colon cancer who received 
adjuvant chemotherapy after surgery: the patients with  
< 5 EMT CTCs responded to therapy, whereas patients 
with ≥ 5 EMT CTCs tended to experience disease 
progression [134]. Moreover, Chang K et al. found that 
stem cell marker expression indicated a worse response 
rate to chemotherapy in metastatic castration-resistant 
prostate cancer (mCRPC), but similar correlations 
with EMT markers were not identified [128]. Similarly, 
Polioudaki H et al. also failed to identify a correlation 
between EMT marker expression and therapeutic response 
in metastatic breast cancer [130].

These studies suggest that EMT and stem cell 
markers may be negatively correlated with therapeutic 
response, and the detection of EMT and stem cell markers 
in CTC may consequently be more convenient and faster 
than conventional methods to assess therapy response and 
help doctors manage patients with cancer better. However, 
the utility of EMT and stem cell markers in assessing 
therapeutic response needs to be fully confirmed and 
strictly standardized prior to clinical application.

The expression of EMT markers in CTC 
correlates with prognosis

Lindsay, CR and colleges found that overall survival 
(OS) was significantly longer in patients with mCRPC 
whose CTCs were positive for the EMT marker vimentin 
than in patients whose CTCs lacked vimentin expression 
(453 days vs 305 days) [121]. Furthermore, Polioudaki 
H et al. detected keratin expression in CTCs from patients 
with metastatic breast cancer and found that low keratin 
expression correlated with worse OS [130]. Likewise, 
Ning, Y et al. showed that progression-free survival (PFS) 
(3.0 vs 7.7 months) and OS (10.0 vs 26.8 + months) were 
significantly shorter in patients with metastatic colorectal 
cancer with CTCs expressing ALDH1, PI3α and/or Akt-2 
[119]. Mego, M also identified a correlation between EMT 
marker positivity and prognosis in patients with metastatic 
breast cancer [129]. Although an increasing number of 
studies have indicated that EMT marker-positive CTCs 
are valuable for prognosis, some studies failed to obtain 
similar results. Chang K et al. found that the expression 
of stem cell markers indicated poor prognosis in mCRPC 
patients, but EMT marker expression failed to show any 
prognostic value [128]. Moreover, Kulemann B’s study of 
pancreatic ductal adenocarcinoma indicated a prognostic 
value for the KRAS mutation in CTCs but not the EMT 
marker ZEB1 [120]. Kasimir-Bauer, S et al. also failed to 
correlate the expression of EMT markers in CTCs with 
prognosis [102].

These studies indicate that the expression of EMT 
and stem cell markers may correlate with poor prognosis, 
but their prognostic value has to be further evaluated in 
additional clinical trials.

Classifying CTCs based on the expression of 
EMT markers

EMT is likely to result in many hybrid phenotypes 
of CTCs that possess both epithelial and mesenchymal 
features because the extent of EMT may differ among 
CTCs [88]. Thus, in addition to the information provided 
by the detection of EMT markers in CTCs on cancer 
stage, treatment response and prognosis, some studies 
have attempted to classify CTCs based on EMT status to 
research the potential value of CTC subpopulations and 
further explore the relationship between the EMT in CTCs 
and cancer progression.

After detecting the expression levels of keratin 
and vimentin in breast cell lines and patients with breast 
cancer, Polioudaki H and colleges introduced a novel 
parameter, the vimentin/keratin ratio (Vim/K ratio), 
to reflect the EMT status of CTCs: a low Vim/K ratio 
suggested an epithelial phenotype, whereas a high Vim/K 
ratio indicated a mesenchymal phenotype in CTCs. Based 
on the Vim/K ratio of CTCs, they classified the CTCs into 
epithelial, biophenptypic and mesenchymal CTCs [130]. 
Moreover, Nel, I et al. counted the CK-positive, vimentin-
positive and N-cadherin-positive CTCs and calculated 
the vimentin+ cells/CK+ cell ratio and N-cadherin+ cells/
CK+ cell ratio in patients with hepatocellular carcinoma. 
They found that a change in the ratio of epithelial 
to mesenchymal CTCs was associated with a longer 
median time to progression (TTP) (1 vs 15 months), and 
the N-cadherin/CK ratio significantly correlated with 
cirrhosis [135]. Furthermore, Liu, YK et al. evaluated the 
expression of several EMT markers, including CK8/18/19, 
EpCAM, vimentin and Twist, in the CTCs of patients with 
hepatocellular carcinoma patients and classified CTCs into 
epithelial, biophenptypic and mesenchymal phenotypes 
based on the expression of EMT markers, which is the 
approach used by most studies to classify CTCs. Liu and 
colleges further studied the potential values of different 
CTC phenotypes and found that the number of epithelial 
CTCs was related to tumor size; biophenotypic CTCs were 
related to tumor number and mesenchymal CTCs were 
associated with metastasis [131]. Similarly, Zhao, R et al. 
analyzed the CTCs of patients with colorectal cancer and 
found that both biophenotypic and mesenchymal CTCs, 
but not epithelial CTCs, correlated with a late clinical 
stage, lymph node metastasis and distant metastasis, 
suggesting that CTCs with mesenchymal properties 
denote more aggressive disease and metastatic potential 
[132]. Li, TT classified CTCs from patients with gastric 
cancer into five types based on a similar principle and 
observed that the proportion of mesenchymal CTCs in 
the post-treatment blood specimens increased in a patient 
who experienced disease progression [133]. Accordingly, 
Yu, M et al. followed the EMT status of CTCs in patients 
with breast cancer and found that the EMT status of CTCs 
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dynamically changed in response to therapy and disease 
progression [136], suggesting that the EMT status of 
CTCs may be used to monitor therapy response and cancer 
progression [133, 136].

CONCLUSIONS AND PROSPECTIVE

EMT promotes the generation of circulating tumor 
cells (CTCs) in epithelial cancers by increasing tumor 
cell invasiveness and motility to promote tumor cell 
intravasation and facilitate tumor cell survival in the 
peripheral system. Although the contribution of EMT 
to tumor cell invasiveness has been confirmed, its role 
in metastasis remains debated. Two metastatic models 
involving EMT have been proposed: the classic EMT/MET 
model, in which EMT comprises the core of the metastatic 
cascade, and the collective migration model, in which 
EMT assists the early stage of the metastatic cascade, as 
discussed above. The metastatic cascade is a complex 
process, and its individual steps need to be elucidated 
before we can determine which of these models is correct. 
Based on limited current evidence, we herein hypothesized 
that the two models mentioned above may co-exist and 
synergistically facilitate the metastatic cascade; tumor 
cells may switch between mechanisms to maximize 
the rate of metastasis. However, several areas remain to 
be explored: the validity of the co-existence of the two 
models, the circumstances inducing cells to switch between 
motility patterns, and the routes of metastasis favored by 
each model. To this end, better-designed assays that can 
distinguish the two models and truly delineate each step of 
the metastatic cascade are needed. In conclusion, the extent 
to which EMT is necessary and the model responsible for 
the metastatic cascade remain to be determined.

Liquid biopsy is undoubtedly superior to 
conventional methods for dynamically monitoring 
cancer status, and the detection of CTCs is likely to 
gain popularity in the clinic. As a supplement to CTC 
enumeration, evaluating the expression of EMT and 
stem cell markers in CTCs may provide information 
about the tumor stage, metastasis, therapeutic response 
and prognosis, and using EMT markers to classify CTCs 
can elucidate CTC heterogeneity. However, standard and 
optimized approaches are lacking and studies of CTCs 
generally suffer from small sample sizes. Therefore, 
larger well-designed clinical trials are needed to further 
illuminate the potential values of EMT markers in CTCs.
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