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ABSTRACT:
Ribosomal proteins (RPs) have gained much attention for their extraribosomal 

functions particularly with respect to p53 regulation. To date, about fourteen RPs 
have shown to bind to MDM2 and regulate p53. Upon binding to MDM2, the RPs 
suppress MDM2 E3 ubiquitin ligase activity resulting in the stabilization and activation 
of p53. Of the RPs that bind to MDM2, RPL5 and RPL11 are the most studied and 
RPL11 appears to have the most significant role in p53 regulation. Considering that 
more than 17% of RP species have been shown to interact with MDM2, one of the 
questions remains unresolved is why so many RPs bind MDM2 and modulate p53. 
Genes encoding RPs are widely dispersed on different chromosomes in both mice and 
humans. As components of ribosome, RP expression is tightly regulated to meet the 
appropriate stoichiometric ratio between RPs and rRNAs. Once genomic instability 
(e.g. aneuploidy) occurs, transcriptional and translational changes due to change 
of DNA copy number can result in an imbalance in the expression of RPs including 
those that bind to MDM2.  Such an imbalance in RP expression could lead to failure 
to assemble functional ribosomes resulting in ribosomal stress. We propose that 
RPs have evolved ability to regulate MDM2 in response to genomic instability as 
an additional layer of p53 regulation. Full understanding of the biological roles of 
RPs could potentially establish RPs as a novel class of therapeutic targets in human 
diseases such as cancer.

INTRODUCTION

The ribosome is responsible for the translation of 
genetic information from mRNA to protein in all living 
cells.  Translation has gained attention as a potential anti-
neoplastic target because cancer usurped those pathways 
[1]. The ribosome is composed of two subunits consisting 
of a complex of ribosomal RNAs (rRNAs) and ribosomal 
proteins (RPs) (reviewed by Melnikov et al. [2]). In 
eukaryotic ribosomes, 40S and 60S subunits associate to 
form the translationally active 80S ribosome.  Four rRNAs 
(25S, 5.8S, and 5S in the large subunit and 18S in small 
subunit) and one molecule each of about eighty different 
RPs are required to assemble the fully active ribosome in 

eukaryotes [3]. Ribosomal proteins, which compose half 
of the ribosome, have recently been highlighted because of 
their roles in the regulation of p53 via binding to MDM2.  
The main purpose of this review is to discuss the potential 
advantages in maintaining the binding of multiple distinct 
RPs to MDM2.

RIBOSOMAL PROTEINS AND THEIR 
REGULATION

Ribosomal proteins are expressed in abundance in 
metabolically active cells undergoing protein synthesis.  
The estimated average number of ribosomes per E. coli 
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cell is 10,000, which accounts for approximately 15% 
of the total cellular protein content. Metabolically active 
eukaryotic cells are estimated to harbor approximately 
106-107 ribosomes (5-10% of total cellular proteins), 
which are required to meet the high demand for protein 
synthesis [4-6]. When cells proliferate in the presence of 
mitogenic stimuli such as growth factors or nutrients, cells 
up-regulate ribosome biogenesis and protein synthesis to 
fulfill the requirements of cell growth and proliferation. 
Not surprisingly, ribosomal protein expression is directly 
linked to cell cycle progression, and initial evidence for 
this link arose from a conditional knockout mouse study of 
ribosomal protein S6 (RPS6). Mouse hepatocytes lacking 
RPS6 completely lost their regenerative capacity following 
a partial hepatectomy due to apparent disruptions in the 
cell cycle [7]. Furthermore, phosphorylation of RPS6, 
which has been implicated in regulation of translation 
and cell growth, can be inhibited when cells are treated 
with nutlin-3a, an MDM2 inhibitor, though the underlying 
mechanism of the inhibition has not been elucidated [8, 
9]. Another line of evidence came from genetic studies 
analyzing the fruit fly Drosophila melanogaster. Defects 
in ribosomal protein production and consequently defects 
in ribosome biosynthesis have been linked to the Minute 
phenotype through the identification of 64 minute loci in 
Drosophila [10-16]. Deregulation of ribosomal protein 
production and ribosome dysfunction has also been 
implicated in many human diseases such as Diamond-
Blackfan anemia, 5q syndrome, Shwachman-Diamond 
syndrome, X-linked dyskeratosis congenita, cartilage-hair 
hypoplasia, and Treacher-Collins syndrome (See details 
in [17] and [18]). In addition to RP haploinsufficiency, 
overabundance of certain RPs is another form of 
ribosomal stress that can disrupt the delicate balance 
of RPs required for ribosomal biogenesis. Indeed, both 
eukaryotic and prokaryotic cells have developed feedback 
mechanisms to regulate the expression level of RPs.  In 
prokaryotic cells, RPs can self-regulate their synthesis by 
various autoregulatory transcriptional and translational 
mechanisms [19-22]. Such autoregulation is well 
conserved in eukaryotic cells as a pathway to dispose of 
excess RPs [23-31]. These evolutionarily conserved RP 
surveillance systems allude to the importance of cellular 
self-evaluation regarding ribosomal protein production 
[18, 32]. Deregulated over- or under-expression of some 
RPs can result in the accumulation of other RPs. Once 
a cell registers imbalances in RP production, the cell 
eliminates excess RPs because equimolar production of 
rRNA and RPs is crucial for proper ribosome assembly 
[27, 33-35]. Ribosome biogenesis has been linked to 
p53 stability [36]. Imbalances in RPs can induce RP 
dosage-dependent p53 activation via MDM2.  CDKN2A 
(also known as p14ARF /p19Arf) and Ataxia Telangiectasia 
Mutated (ATM) kinase suppress MDM2 in the presence 
of oncogenic and genotoxic stresses, respectively. 
CDKN2A inhibits MDM2 function by directly binding 

to MDM2, whereas ATM suppresses MDM2 through 
post-translational modifications [37]. Similarly, RPs 
have recently been shown to directly bind to MDM2 
in response to nucleolar stress resulting in the negative 
regulation of MDM2 and the subsequent activation of 
p53 (for a detailed review, see [38, 39]. Therefore, the 
tight regulation of RP and rRNA expression is important 
not only for normal cell physiology but also to avoid the 
activation of RP extraribosomal functions.

EXTRARIBOSOMAL FUNCTIONS OF RPS

Ribosomal proteins play important roles in diverse 
cellular physiological processes in addition to their basic 
roles in protein synthesis. In 1974, the first extraribosomal 
function of RPs was proposed based on the observation 
that bacteriophage Qβ expresses a peptide that interacts 
with three host (E. coli) proteins (EFTu, EFTs, and RPS1) 
and functions as an RNA replicase used for the replication 
of the phage genome. RPS1 binds to specific regions of the 
Qβ peptide and regulates the function of the Qβ genome 
(reviewed in [40]). Since the first report of extraribosomal 
functions of RPS1 in E. coli, additional extraribosomal 
functions of various RPs have been revealed by 
knockdown or knockout of RPs in various animal models.  
Knockdown of RPS19 in zebrafish leads to anemia [41, 
42], and even more strikingly, knockdown of RPL11 in 
zebrafish results in developmental defects in the head [43]. 
Mutations in RPS19 or RPS20 in mice result in abnormal 
melanocyte proliferation and red blood cell hypoplasia 
[44]. RPL22 inactivation promotes cell transformation by 
inducing expression of the stemness factor Lin28B in mice 
[45]. Mutations in RPS19 are also associated with 25% 
of Diamond-Blackfan anemia cases (DBA). Currently, 
nine RPs have been implicated in DBA (RPL5, RPL11, 
RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and 
RPS26) [46, 47]. In humans, RPS14 haploinsufficiency 
leads to 5q syndrome [48], and RPS4 haploinsufficiency 
appears to be responsible for Turner syndrome in females 
[49]. Collectively, these observations strongly suggest that 
imbalances in certain ribosomal proteins result in various 
detrimental phenotypes related to the extraribosomal 
functions of RPs.

THE NUCLEOLUS AS A CENTER FOR THE 
CELLULAR STRESS RESPONSE

The nucleolus is a subnuclear non-membrane-
bound structure where ribosome biogenesis occurs. 
Translocation of ribosomal proteins from the nucleolus 
to the nucleoplasm due to defects in ribosome biogenesis 
can trigger a stress response associated with nucleolar 
stress. Considering that most types of cellular stress are 
associated with the disruption of nucleolar integrity, 
which results in the release of ribosomal proteins from 
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the nucleolus to the nucleoplasm, the nucleolus could 
conceivably function as a structure that is integrally 
involved in stress sensing [50]. In other words, the integrity 
of the nucleolus, as indicated by the fidelity of ribosome 
biogenesis, appears to represent a mechanism by which 
the cell can gauge whether the cellular conditions are 
favorable for growth and proliferation. Chemical reagents 
(actinomycin D, 5-fluorouracil, and mycophenolic acid) 
or cellular events that disrupt steps involved in ribosome 
biogenesis (inhibition of rRNA synthesis, impaired rRNA 
processing, and RP imbalances) can cause nucleolar stress 
(reviewed in [51, 52]). For example, upon release from the 
nucelolus, RPL26 interacts with Nucleolin to enhance p53 
translation following DNA damage [53]. As a result of RP 
concentration imbalances in the presence of stress, most, 
if not all, RPs capable of binding MDM2 are released from 
the nucleolus. Upon release, the RPs bind MDM2 and 
cause p53 accumulation via the stabilization of p53 and/
or an increase in p53 translation, which ultimately results 
in cell cycle arrest or apoptosis. As a result, the stress 
response initiated in the nucleolus becomes transmitted to 
the p53 pathway through RP-MDM2 binding.

MDM2 IS REGULATED BY A FLOCK OF RPS

MDM2 is the best characterized negative regulator 
of p53. MDM2 is an E3 ubiquitin ligase that encodes a 

C-terminal RING domain and has multiple protein-binding 
domains including a p53-binding region at the N-terminus 
and an MDMX (also known as MDM4)-binding region 
through the RING domain. In addition, the acidic domain 
and the zinc finger domain in the central region of MDM2 
have been shown to interact with a variety of regulatory 
factors such as the tumor suppressor p14ARF and multiple 
ribosomal proteins [55] (Figure 1). To date, fourteen RPs 
(L5, L11, L23, L26, L37, S3, S7, S14, S15, S20, S25, 
S26, S27, and S27L) have been shown to bind directly to 
MDM2 (Table 1).

CHARACTERISTICS OF THE RP-MDM2 
INTERACTION

MDM2-binding RPs lack obvious similarities in 
amino acid sequences or three-dimensional structures [56, 
57]. However, most MDM2-binding RPs share at least 
one feature in that they bind to the central acidic domain 
(CAD) of MDM2 (amino acid residues 237-301) (Figure 
1). Electrostatic interaction appears to be one of the major 
binding forces between the MDM2 CAD and the basic 
residues within the MDM2-binding proteins. Most RPs 
are very basic proteins with pI (isoelectric point) greater 
than 10, which is consistent with their innate functions 
as RNA-binding proteins [18]. Interestingly, the most 
well known MDM2 regulator p14ARF/p19Arf is also highly 

Figure 1: Functional domains of MDM2 and the regions that are bound by various RPs.
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basic (pI>12), which supports the idea that electrostatic 
interaction plays a major role in binding the MDM2 CAD 
[58]. However, even though electrostatic interactions can 
at least partially explain why MDM2-binding RPs interact 
with the CAD of MDM2, additional mechanisms that 
determine the selectivity of the RP-MDM2 interaction 
probably exist. Furthermore, because so many RPs can 
bind to MDM2 and because many of the RP binding sites 
overlap, one may predict that the order of RP binding 
is tightly regulated. One possible mechanism of RP-
MDM2 specificity that merits further investigation is the 
role of post-translational modifications within the RP 
binding regions. Indeed, many of the RP binding sites 
within MDM2 contain residues that are phosphorylated 
and rendered negatively charged by various kinases 
such as the serine/threonine kinase casein kinase I [54].  
Studies investigating the effect of various MDM2 post-
translational modifications on the many RP-MDM2 
interactions could yield valuable insight into MDM2 
regulation. Despite the fact that 14 RPs have been shown 
to bind MDM2, approximately 80 basic RPs exist, which 
suggests that the total number of RPs found to bind MDM2 
will likely increase over the next few years. In light of the 
multitude of reports confirming and expounding on RP-
MDM2 interaction, a fundamental question remains: why 
do so many ribosomal proteins interact with MDM2?

WHY DO MULTIPLE RPS INTERACT WITH 
MDM2?

Recently, Zhou et al. briefly discussed some reasons 
why mammalian cells have conserved the ability of so 
many RPs to activate p53 via MDM2 [59]. The authors 
hypothesized that individual RPs are required to work 
together to efficiently inactivate MDM2. Alternatively, the 
authors proposed that each MDM2-binding RP may bind 
to MDM2 at different time points in a sequential manner 
depending on which RPs are released earlier following 
stress. Lastly, the authors speculated that different types 
of stress may inhibit MDM2 through different RPs. In the 
following section, we further expand the discussion.
(1) Multiple RPs bind to MDM2 to produce a stronger 
effect than a single RP

As one might expect, RPs can interact with 
each other and with other rRNAs, as RPs require these 
interactions to assemble a fully functional ribosome. For 
example, RPL7 and RPL12 in E. coli form a functionally 
important domain in the ribosome (reviewed in [60]). In 
addition to the formation of ribosomes, several studies 
have reported that some RPs interact with each other to 
execute certain extraribosomal functions. For example, 
in bacteria, RPS1 and RPS2 interact with each other to 
initiate translation [61]. Although RPL5 and RPL11 can 
suppress MDM2 individually, previous reports have 
suggested that the protective effect of RPL5 and RPL11 
on p53 stability is even more evident when both proteins 
are present [62]. It will be interesting to determine whether 

Table 1: List of MDM2-binding RPs
MDM2-Binding RPs Interacting residues in MDM2 Chromosomal location in human (mouse) References

Large Subunit
L5 153-294, 216-374 1p22.3-p22.1 (5) [98, 99]
L11 284-374 1p36.1-p35 (4) [100, 101]
L23 150-300, 384-425 17q11.2-q12 (11) [101-103]
L26 204-345 17p13 (11) [104, 105]
L37 273-339 5p13.3-p13.1 (15) [106, 107]
Small Subunit
S3 243-257 11q13.3-q13.5 (7) [108]
S7 273-339 2p25.3-p25.1 (12) [109, 110]
S14 152-301 5q33.1-q33.3 (18) [59]
S15 1-220, 273-339, 437-482 19p13.3 (10) [106]
S20 1-220, 273-339, 437-482 8q11.2-q13 (4) [106, 111]
S25 180-298 11q23.3 (9) [112]
S26 200-299 12q13 (10) [113]
S27 151-293 1q21.1-21.3 (3) [114]
S27L 151-293 15q22.1 (9) [114]
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RPL5 (or RPL11) synergizes with other RPs when they 
bind MDM2 simultaneously. The synergistic suppression 
of MDM2 by the concomitant binding of multiple RPs 
may result in greater induction of p53.
(2) Different types of stress might cause imbalances in 
RP production and induce the binding of specific RP(s) 
to MDM2

Different MDM2-binding RPs may be present in 
the nucleoplasm in different concentrations depending on 
the specific type of ribosomal stress signal. Considering 
the fact that all RPs share the purpose of assembling the 
ribosome, it is unlikely that MDM2-binding RPs can 
sense distinct stressors individually. Nevertheless, this 
hypothesis cannot be ruled out based on the fact that most 
stress types including DNA damage, temperature change, 
hypoxia, alteration of proteasome activity, viral infection, 
oncogenic stress, and transcriptional inhibition cause the 
disruption of the nucleolus, which activates the nucleolar 
stress response (reviewed in [52]). Various agents that 
mimic these stresses have been identified, and all of the 
aforementioned agents induce p53 stabilization following 
nucleolar disruption. These stresses are also associated 
with the covalent modification of p53. However, the 
mechanism by which p53 integrates such a wide range of 
stimuli remains unknown [50, 52]. Recent studies have 
shed light on the pivotal roles of RPs in p53-induced 
stress responses via MDM2 regulation (reviewed in 
[38]). Therefore, it is possible that different stresses may 
cause differential expression of individual RPs through 
mechanisms ranging from transcription regulation, protein 
stability, transport, assembly variations, etc. Many RPs 
may have individually evolved the ability to regulate 
MDM2 in response to a particular type of stress. This “RP 
and stress pair” could integrate many different types of 
stress into a p53-mediated response. It is worth noting 
that many characterized RP-MDM2 interactions are based 
on in vitro cell culture systems. Therefore, the roles of 
many MDM2-binding RPs in p53 regulation remain to be 
confirmed in vivo.
(3) Complex of multiple RPs might be required to 
regulate MDM2

The fact that several RPs can interact with MDM2 
may imply that single RP binding is not sufficient to 
suppress MDM2. In other words, the formation of a 
complex between multiple RPs and MDM2 may not 
have a synergistic effect (as discussed above) but may be 
a minimum requirement for MDM2 regulation. If this is 
the case, then individual RPs would need to coordinate 
as a sub-ribosomal complex to bind to multiple MDM2 
molecules, as MDM2 appears to function as a multi-
subunit complex [59]. One study has reported evidence 
that ribosomal proteins directly interact with each other to 
negatively regulate MDM2 [62]. In this study, RPL5 and 
RPL11 were shown to physically interact with each other 
via 5S rRNA resulting in additional repression of MDM2. 

In addition, complex formation with other co-factors has 
been proposed as another layer of ribosome regulation.  
RPL5 and RPL11 appear to be required to form a complex 
with assembly factors Rpf2 and Rrs1 for proper RNA 
processing [63]. Nevertheless, some RPs, such as RPS19, 
have been shown to interact with more than 150 other 
proteins including 25 ribosomal proteins (14 RPs in the 
40S ribosomal subunit and 11 RPs in the 60S subunit) 
in human erythroleukemia K562 cells [64]. Intriguingly, 
RPS19 has a wide variety of proteins that comprise its 
interactome, which consisted of NTPases (ATPases and 
GTPases), kinases, and transcription factors.

RPL11 IS AN IMPORTANT PLAYER IN P53 
ACTIVATION

Among the many MDM2-binding RPs, RPL11 
appears to be the most important for MDM2 regulation.  
Recently, RPL5 and RPL11 have been shown to be 
protected from proteosomal degradation after ribosomal 
biogenesis stress, whereas other MDM2-binding RPs 
such as L23 L25, and S7 were not protected [65].  This 
study suggests that RPL5 and RPL11 play crucial roles 
in the RP-mediated activation of p53 and concurrently 
reconfirms the critical role of the nucleolus in the 
stress response. RPL11 was one of the first RPs to 
be characterized as a major stress-responding RP.  
Inhibition of ribosome biogenesis results in the increased 
expression of RPL11, which inhibits MDM2-mediated 
p53 ubiquitination [66]. Recently, physical and functional 
interaction between RPL11 and p14ARF has been reported 
[67]. This study demonstrated that p14ARF induces 
ribosomal stress, which causes the up-regulation of RPL11 
and subsequently results in stronger MDM2 inhibition. At 
the transcriptional level, the RPL11-MDM2 complex has 
been shown to directly localize to the promoter region of 
p53 target genes and activate those genes [68]. In another 
study, three (L5, L11, and L26) out of fourteen MDM2-
binding RPs were reported to interact with Pict1, a novel 
MDM2-p53 pathway regulator. Sasaki et al. carried out 
siRNA-mediated knockdown against four MDM2-binding 
RPs (RPL5, RPL11, RPL23, and RPS7), and found that 
RPL11 is the only RP that is crucial for the inhibition of 
MDM2 function in doxycycline-treated mouse ES cells 
[69].

STRUCTURAL FEATURES OF RPL11

Structural features of RPL11 have also indicated the 
potential for unique roles of RPL11 regarding ribosomal 
and extraribosomal functions. A high-resolution structure 
of the eukaryotic ribosome has recently been published 
[70]. Prior to this study, the same research group described 
the crystal structure of the eukaryotic ribosome, and 
they indicated that RPL11 and RPL5 are located in the 
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central protuberance of the large subunit. Furthermore, 
RPL11 appears to be in contact with the head domain of 
the 40S subunit, an arrangement that is well conserved 
in prokaryotic ribosomes as well [71]. In prokaryotes and 
eukaryotes, the ribosome translates proteins through the 
use of a ratcheting movement between the small and large 
subunits. For the ratcheting movement of ribosomes in 
eukaryotes, the contact points between the two subunits 
known as the “bridge” are critical. Therefore, RPL11 
seems to play a crucial role in the constant adjustment 
of the bridge as the ratcheting movement progresses.  
Another interpretation can be made based on those 
ribosomal structure studies. As mentioned above, RPL5 
and RPL11 can directly interact with 5S rRNA [62, 71].  
The transcription and processing of rRNA, which occur 
in the nucleolus, are sensitive to different types of cellular 
stress [52]. Because RPL11 and RPL5 co-localize and 
interact with rRNA directly, these two RPs may function 
as the main sensors for problems that arise in ribosome 
biogenesis (i.e. rRNA transcription or processing) that 
may result from different types of cellular stress. This 
interpretation is consistent with the aforementioned 
statement that RPL11 appears to be the most important 
player in p53 activation and stress sensing.

REGULATION OF OTHER PROTEINS BY 
RPL11

MDMX is known to play a role in p53 regulation via 
its ability to bind to both p53 and MDM2 [72]. Although 
MDMX has no intrinsic E3 ligase activity and does not 

promote p53 degradation, MDMX exhibits considerable 
homology to MDM2 and forms a stable heterodimer 
with MDM2. The interaction between MDM2 and 
MDMX is well known to enhance the ability of MDM2 
to function as an E3 ubiquitin ligase to degrade p53, 
although the associated mechanism remains unclear [73-
78]. Gilkes et al. reported that RPL11 promotes MDMX 
degradation by binding to MDM2. In this study, the 
authors ectopically expressed RPL11 in the HCT116  
p53-/- cell line and found that whereas overexpressed 
RPL11 did not affect MDM2 protein expression, it 
stimulated MDMX polyubiquitination by MDM2 [79]. It 
is worth to note that the increased E3 ligase activity of 
MDM2 on MDMX upon RPL11 binding is contradictory 
to the finding that RPL11-MDM2 interaction results 
in decreased polyubiquitination and increased stability 
of p53. Binding of RPL11 to MDM2 may skew 
MDM2 E3 activity toward MDMX rather than p53 via 
conformational change of MDM2. Alternatively, RPL11-
MDM2 interaction generally increases MDM2 E3 activity, 
but simultaneous binding by other RPs to MDM2 may 
direct the E3 activity towards MDMX. Additionally, 
RPL11 has been shown to inhibit the cell cycle via the 
c-Myc pathway. RPL11 binds to c-Myc and inhibits 
the expression of c-Myc target genes by recruiting the 
key coactivator transformation-transactivation domain-
associated protein (TRRAP) to the c-Myc promoter 
regions. The c-Myc mRNA level is also regulated 
by RPL11 via the recruitment of miR-24/miRISC to 
the 3’ untranslated region of c-Myc mRNA [80, 81].  
Interestingly, RPL11 is one of the transcriptional targets 
of c-Myc, which implies the existence of a c-Myc negative 

Figure 2: Models depicting aneuploidy-based imbalances in RPs that result in the activation of the stress response via 
MDM2 binding and p53 activation. Left, a cell with a normal karyotype produces equal proportions of RPs and does not activate 
p53. Right, an aneuploid cell with an extra copy of chromosome 1 (indicated by an arrow) expresses a disproportionate amount of RPL11 
resulting in the activation of the p53 stress response pathway. 
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feedback loop [82]. c-Myc is a major regulator of protein 
synthesis and ribosome biogenesis (reviewed in [83]).  
Because RPL11 and c-Myc form a potential negative 
feedback loop, it is plausible that RPL11 plays a critical 
role in the biogenesis of ribosomes and RPs themselves. 
Taken together, one may reasonably conclude that RPL11 
is the most critical RP responsible for the ribosomal and 
extraribosomal functions of RPs. Increasing attention has 
been given to the RPL11-MDM2-p53 pathway. Recently, 
Olausson et al. reviewed several novel regulators of the 
RPL5/RPL11-MDM2-p53 pathway [84], therefore, the 
regulatory mechanisms associated with this pathway 
appear to be key to a better understanding of overall p53 
regulation. 

CAN RPS FUNCTION AS SENSORS FOR 
ANEUPLOIDY?

An important topic that has not yet been discussed 
thus far is the fact that genes encoding RPs are widely 
dispersed over many different chromosomes. In humans, 
all 80 RP genes are found on both sex chromosomes and 
20 autosomes (only chromosomes 7 and 21 do not encode 
RP genes), whereas the 4 rRNA genes are clustered in 
6 autosomes [85]. The RPs that have been reported to 
bind to MDM2 are also distributed among nine different 
autosomes in humans and ten different autosomes in mice 
(Table 1). Due to the dispersion of RP genes throughout the 
human genome, any total or partial loss of chromosomes 
(e.g. monosomies and partial monosomies) is likely to 
result in heterozygous deficiencies of one or more RP 
genes, and such aneuploidy may account for the abnormal 
development and poor viability of monosomic human 
fetuses [86]. If this is the case, then imbalances in RPs 
due to aneuploidy may play a key role in several human 
diseases that are commonly associated with aneuploidy 
such as cancer. The determination of how cells respond 
to aneuploidy is a major focus of cancer research. Despite 
the dosage compensation effect, recent studies have shown 
that chromosome copy number change generally results 
in changes in protein abundance in yeast [87]. Yet, it is 
unclear whether aneuploidy causes transcriptional and 
protein expression changes within the cell in a manner 
that correlates with the DNA copy number (reviewed 
in [88]). Nevertheless, aneuploidy has been correlated 
with the induction of the p53 response [89]. In normal 
cells, aneuploidy that occurs following chromosome 
missegregation, which induces DNA damage on the 
lagging chromosomes, or stresses such as proteotoxic 
stress and metabolic stress results in p53 activation via 
ATM [90, 91]. Numerical and structural chromosomal 
abnormalities are also observed in the vast majority of 
cancer genomes. Although whether such aneuploidy is 
a cause or a consequence of malignant transformation 
remains unclear, numerous lines of evidence indicate 
that aneuploidy can predispose cells to malignant 

transformation. However, the underlying mechanisms that 
drive tumorigenesis remain to be identified [88]. Recently, 
a large-scale DNA copy number analysis in human cancers 
revealed that an average of 25% of the cancer genome 
displays some form of aneuploidy [92]. Consistently, 
analysis of the Mitelman Database has also shown whole-
chromosome alterations that occur in several cancer types 
[88]. If aneuploidy triggers a common stress response, 
then all aneuploidic cancer cells would presumably 
require specific adaptations to allow proliferation in 
the presence of their abnormal genomes. Should cancer 
cells share common mechanisms that enable them to 
tolerate aneuploidy by avoiding the stress response, these 
mechanisms could then represent novel therapeutic targets. 
Considering the large number of RP genes, one may 
reasonably conclude that RP genes are largely dispersed 
among the genome as a reflection of the early origin of 
these genes during evolution. However, the dispersion of 
the RPs throughout the genome simultaneously offers the 
cell an inherent mechanism through which it can recognize 
most genomic abnormalities, which are manifested in 
the deregulation of RP expression. Thus, RPs can play a 
crucial role in normal cells to protect against aneuploidy 
(Figure 2). Given that the RP genes are encoded on 
virtually all of the human chromosomes, an imbalance 
in RPs due to aneuploidy may work as an additional 
safeguard through which p53 can be activated. In other 
words, the differential expression of RPs in stressed cells 
due to increased genomic instability or aneuploidy may 
serve as an alarm system (or a novel stress sensor) to 
induce p53 activation through the suppression of MDM2.

In addition to p53-dependent roles of RP-MDM2 
interactions in responding to genome instability, evidence 
suggests that p53-independent roles may also exist. For 
example, the Eischen group has reported that MDM2 
overexpression results in a p53-independent increase in 
genome instability by binding to the DNA damage repair 
protein Nbs1 [93]. Furthermore, MDM2 transgenic mice 
expressing elevated levels of MDM2 display increased 
genome instability presumably due to increased binding 
of Nbs1 by MDM2 [94]. Interestingly, Nbs1 binds MDM2 
amino acids 198–228, which overlaps with the binding 
site for at least eight RPs (RPL5, RPL23, RPL26, RPS14, 
RPS25, RPS26, and RPS27/2L) (see Table 1). Therefore, 
possible implications for p53-independent effects of RP-
MDM2 interactions could involve the masking of the 
Nbs1 binding site in MDM2 by these RPs as a result of 
genome instability. Nevertheless, this potential role for 
RP-MDM2 interaction and the potential role of the RP 
genes as genomic instability sensors remain to be tested 
experimentally.

CONCLUSIONS AND PERSPECTIVES

We have discussed that RPs have extraribosomal 
functions, and the release of RPs from the nucleolus to 
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the nucleoplasm following stress plays important roles in 
p53 induction. Fourteen RPs have been shown to bind to 
the acidic domain and/or zinc-finger domain of MDM2, 
which results in MDM2 suppression and p53 stabilization.  
We have suggested three hypotheses that could explain 
why such a large number of RPs have evolved the ability 
to regulate MDM2. RPs may have a synergistic effect 
when multiple RPs bind to MDM2 simultaneously, or 
complex formation by multiple RPs may be required for 
the regulation of MDM2. Another possible scenario is that 
each RP responds to a distinct type of stress as a way for 
the cell to integrate many different types of stress into one 
stress response (p53 activation). No matter what the true 
mechanism is, it implies that those RPs play important 
roles in cellular quality control by regulating MDM2-p53 
pathway. Occasionally, cells encounter severe stress 
such as DNA damage. In that case, cells have developed 
defense mechanisms to cope with those stresses. What 
about daily routine mild stresses such as nutrient stress?  
It is likely that cells have evolutionary developed another 
defense mechanisms as well against the mild and chromic 
stresses. We propose that RPs-MDM2-p53 pathway 
might play a central role in routine control of cellular 
quality. Among the RPs that bind MDM2, we speculate 
that RPL11 is the most important one with respect to 
its ribosomal and extraribosomal functions. RPL11 has 
significant roles in MDM2 and MDMX regulation, as 
RPL11 cooperates with p14ARF, RPL5, c-Myc, and other 
co-factors. Furthermore, RPL11 has a unique role in the 
ribosome structure and ratcheting movement of the two 
ribosomal subunits. MDM2 mutations in the region that 
binds to RPL11 have discovered in human cancer [95, 96].  
Findings of those cancer-associated mutations in MDM2 
and investigation of their roles in tumorigenesis in vivo 
further strengthen the importance of RP-MDM2-p53 
pathway [39]. Finally, we posited that widely dispersed 
RPs in the human genome could work as a stress sensor 
for genomic instability because aneuploidy can result in 
an imbalance in RP expression, which could consequently 
result in the induction of p53. The importance of RPs 
regarding their extraribosomal functions especially in the 
stress response has only recently been widely accepted 
by the field. However, due to our limited knowledge 
on the functions of RPs in an extraribosomal context, a 
comprehensive understanding of the ribosomal protein 
world is far from complete. Careful and thoughtful follow-
up studies will shed more light on our understanding of 
these multifaceted proteins. As we gain more knowledge 
on the physiological functions of RPs especially MDM2-
binding RPs, we will be able to paint a more precise 
picture regarding how these RPs regulate the p53-
mediated stress response. During the preparation of this 
review, Berkers et al. published a review on the roles of 
p53 family members in metabolic regulation highlighting 
the importance of p53 regulation in various metabolic 
diseases [97]. Ultimately, a better understanding of the 

RP-MDM2 mechanism of p53 regulation following stress 
such as nutritional stress should invariably identify novel 
targets that can be exploited for therapeutic benefits.
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