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ABSTRACT
Bladder cancer (BC) is a common cancer but diagnostic modalities, such as 

cystoscopy and urinary cytology, have limitations. Here, high-performance liquid 
chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) was 
used to profile urine metabolites of 138 patients with BC and 121 control subjects 
(69 healthy people and 52 patients with hematuria due to non-malignant diseases). 
Multivariate statistical analysis revealed that the cancer group could be clearly 
distinguished from the control groups on the basis of their metabolomic profiles, 
even when the hematuric control group was included. Patients with muscle-invasive 
BC could also be distinguished from patients with non-muscle-invasive BC on the 
basis of their metabolomic profiles. Successive analyses identified 12 differential 
metabolites that contributed to the distinction between the BC and control groups, 
and many of them turned out to be involved in glycolysis and betaoxidation. The 
association of these metabolites with cancer was corroborated by microarray results 
showing that carnitine transferase and pyruvate dehydrogenase complex expressions 
are significantly altered in cancer groups. In terms of clinical applicability, the 
differentiation model diagnosed BC with a sensitivity and specificity of 91.3% and 
92.5%, respectively, and comparable results were obtained by receiver operating 
characteristic analysis (AUC = 0.937). Multivariate regression also suggested that 
the metabolomic profile correlates with cancer-specific survival time. The excellent 
performance and simplicity of this metabolomics-based approach suggests that it 
has the potential to augment or even replace the current modalities for BC diagnosis.

INTRODUCTION

Bladder cancer (BC) is the seventh most common 
cancer worldwide in men and the 17th most common 
cancer in women [1]. At the time of diagnosis, about 
70–80% of BCs are non-muscle-invasive bladder 
cancers (NMIBCs), while the remaining 20–30% is 

muscle-invasive bladder cancers (MIBCs). Although these 
BC types both originate from the urothelium in the urinary 
bladder, they have distinct clinical characteristics. Non-
muscle-invasive bladder cancer (NMIBC) is associated 
with good survival compared to other malignancies, 
but 30-50% of patients with NMIBC will eventually 
experience recurrence after transurethral resection (TUR) 
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of the primary tumor, and 10–20% will progress to 
muscle-invasive bladder cancer (MIBC) [2]. In the case 
of MIBC, while radical cystectomy, radiation therapy, and 
chemotherapy are considered to be effective therapies, 
patients with MIBC often have poor outcomes despite 
systemic treatment [3]. Therefore, to manage BC properly, 
it is essential to obtain a precise and early diagnosis of BC.

Diagnostic strategies for BC have historically relied 
on the combination of cystoscopy and urinary cytology. 
However, the cystoscopic procedure is costly, invasive, 
and uncomfortable. While urinary cytology is a convenient 
method for diagnosing BC, its sensitivity is low, which 
reduces its reliability. Therefore, new and convenient 
diagnostic approaches that can distinguish BC from non-
malignant conditions and MIBC from NMIBC are needed.

Metabolomics is a relatively new scientific field 
for studying the biochemical processes that involve 
metabolites. As metabolites are present in readily-available 
biofluids, metabolomics has been applied to the diagnosis 
of many cancers, such as ovarian cancer [4], pancreatic 
cancer [5, 6], and leukemia [7]. Recent application also 
includes direct profiling of tissue metabolites without 
any extraction step, using high-resolution magic angle 
spinning NMR method [8, 9]. Efforts have been also made 
to apply metabolomics to tissue imaging based on local 
metabolite patterns [10, 11]. The clinical applications of 
metabolomics are expected to grow further, considering 
that the vast majority of clinical diagnostic methods are 
based on small molecules [12].

Of the various cancers, BC seems to be ideal 
for urinary metabolomics-based diagnosis, as urine 
can directly contact the cancer lesion in the bladder. 
Moreover, urine collection can be made conveniently 
and its metabolomics study is non-invasive. For these 
reasons, there have been some metabolomics applications 
to BC diagnosis with various platforms, and LC-MS, 
GC-MS, and NMR metabolomics have been used to 
suggest that metabolomic approach has a potential for 
early or accurate diagnosis of BC [13-16]. However, 
most of these studies used small sample sizes and did not 
properly consider possible confounding effects of benign 
hematuria. In addition, these studies did not confirm the 
metabolic markers based on other experimental approach. 
Furthermore, the ability of metabolomic profiles to predict 
the survival of patients with BC has not yet been assessed.

In the present study, a metabolomics approach 
using high-performance liquid chromatography-mass 
spectrometry (HPLC-MS) was carried out. Of all 
metabolomics-based diagnosis studies in BC, this study 
employed the largest number of patients to date (138 
cancer patients and 121 controls). In addition, a substantial 
proportion of the control group consisted of patients 
with benign hematuria (n = 52). Rigorous statistical 
cross-validation and comparisons with microarray gene 
expression data revealed that the metabolomics-based 

diagnostic approach that was developed performed well, 
and that the distinguishing markers relate to glycolysis and 
fatty acid betaoxidation. Metabolomics could also be used 
to distinguish between NMIBC and MIBC and predict the 
survival of patients with BC.

RESULTS

Baseline characteristics

Supplementary Table S1 lists the baseline 
characteristics of enrolled patients and controls. The 
patients were 65.64 ± 12.65 years old on average and 
consisted of 112 males and 26 females. The controls 
were 64.31 ± 9.18 years old on average and consisted of 
77 males and 44 females. Thirty-one, sixty-three, and forty-
four patients had grade G1, G2 and G3 cancer, respectively 
and 48, 35, 25, 10 and 20 patients had stage Ta, T1, T2, T3, 
and T4 cancer, respectively. Seventeen (12.3%) patients 
had one or more lymph-node metastases and nine (6.5%) 
had distant metastasis. The median follow-up period was 
37.1 months. Of the 138 patients with BC, 83 (60.1%) had 
NMIBC and 55 (39.9%) had MIBC.

Differentiation between BC patients and controls, 
and between NMIBC and MIBC based on urine 
metabolomic profile

Representative HPLC-MS chromatograms of 
the urine samples of the healthy control subjects and 
the patients with NMIBC or MIBC are shown in 
Supplementary Figure S1. The peaks were very well 
resolved and were evenly dispersed across the entire 
retention time domain, showing high qualities of the raw 
data. In addition, the overall peak profiles of the three 
groups looked quite different, which suggested that these 
profiles could be used to discriminate between the groups. 
For the holistic treatment of these data, multivariate 
analysis was used to identify the metabolomic differences 
between the groups. An orthogonal projections to latent 
structure-discriminant analysis (OPLS-DA) model was 
obtained with one predictive and two orthogonal 
components, and it gave good separation between the 
normal subjects and the cancer patient group (NMIBC 
and MIBC were combined) (Figure 1A-B) (R2 = 0.878 
and Q2 = 0.662). Notably, 43% of the normal group were 
patients with hematuria (n = 52) who did not have cancer 
(the open black boxes in Figure 1A-B). These patients 
are an important control because hematuria is frequently 
found among BC patients, and thus, its presence in normal 
patients could be a possible confounding factor in the 
cancer diagnosis. The results showed that the urinary 
metabolomics approach can differentiate the normal 
hematuric patients from patients with cancer. We also 
performed the differentiation between the two subgroups 
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of cancer, NMIBC and MIBC (Figure 1C-D), and the 
orthogonal projections to latent structure-discriminant 
analysis (OPLS-DA) model with one predictive and 
two orthogonal components separated the cancer groups 
reasonably well (R2 = 0.875 and Q2 = 0.355). These 
findings indicate that LC-MS analysis of urine can help the 
diagnosis of BC and differentiation between its subtypes.

Identification of cancer-specific metabolites

The successful distinction of normal and cancer 
groups led us to search for the specific metabolites that 
contributed to the metabolomic differences between these 

groups. Based on the OPLS-DA model described above, the 
signals that had high correlation and signal-to-noise ratio 
values were selected. These included the signals at 119.04, 
130.05, 147.03, 162.11, 169.01, 189.16, 233.11, 246.17, 
276.14, 286.20, 316.25, and 810.13 m/z (Table 1). The 
molecules responsible for these signals were identified by 
analyzing the MS/MS spectra and comparing them to the 
spectra of known standard compounds (Table 1). Several 
of them belonged to carnitine and acylcarnitines (carnitine, 
isovalerylcarnitine, glutarylcarnitine, octenoylcarnitine, 
and decanoylcarnitine), while others related to the last 
steps of glycolysis (phosphoenolpyruvate and pyruvate) or 
the TCA cycle (acetyl-CoA, succinate, and oxoglutarate). 
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Figure 1: OPLS-DA score plots (A & C) and 3D scatter plots (B & D). Each symbol represents the metabolomic profile of an 
individual sample. (A & B) Comparison of normal controls (black) and patients with bladder cancer (red). The open black boxes represent 
the control patients with benign hematuria. (C & D) Comparison of the two types of bladder cancer. NMIBCs are represented by black 
boxes while MIBCs are represented by red dots.
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To confirm that the control and cancer groups differed in 
terms of the urinary levels of these metabolites, Student’s 
t-tests were performed (Figure 2). Indeed, the two groups 
differed significantly in terms of all of these markers.

Diagnostic performance of the  
metabolomics-based model

To evaluate the performance of the multivariate 
model in the diagnosis of BC, cross-validation was carried 
out. As many as one third of the total samples (40 control 
subjects and 46 cancer patients) were randomly picked and 
used as the test set, and the prediction model was built 
from the rest of the samples (training set) (Figure 3A). 
The models were then used to predict the diagnoses of 
the test set subjects, and the comparison with the actual 
diagnoses yielded sensitivity and specificity values. 
This cross-validation is important for determining the 
practical applicability of metabolomics-based diagnostic 
approaches; however, this has not always been performed 
in other BC metabolomics studies. The OPLS-DA model 

predicted that 42 of the 46 cancer samples were from 
cancer patients, while 37 of the 40 normal samples were 
predicted to be from normal subjects. Thus, the prediction 
model had a sensitivity of 91.3% and a specificity of 
92.5% (Figure 3B). A partial least square-discriminant 
analysis (PLS-DA)-based multivariate receiver operating 
characteristic (ROC) curve was also generated with 
the same training and test sets used with the OPLS-DA 
prediction test (Figure 3A), because receiver operating 
characteristic (ROC) has been conventionally used to 
evaluate diagnostic performance in clinical research. 
The resulting area under the curve (AUC) was 0.937 
and the sensitivity and specificity values were both 85% 
(Figure 3C). Thus, the two validation methods diagnosed 
cancer with comparable sensitivity and specificity  
(85–92.5%). The ability of the OPLS-DA model to 
differentiate between NMIBC and MIBC was assessed in 
a similar way. The OPLS-DA model predicted 24 out of 
28 test NMIBC samples correctly (85.7% accuracy), and 
9 out of 18 MIBC test samples correctly (50% accuracy) 
with 71.7% overall accuracy (Supplementary Figure S2).

Table 1: Potential urine biomarkers of bladder cancer (1-12) and mRNA expression of related 
genes in BCs relative to control tissue (13-15)a.

NO. m/z Adduct Metabolite/gene Element 
composition/symbol p-valueb Trendc

1 119.0362 [M+H]+ Succinate C4H6O4 0.02 ↑

2 130.0491 [M+ACN+H]+ Pyruvated C3H4O3 0.012 ↑

3 147.0285 [M+H]+ Oxoglutarated C5H6O5 0.0059 ↑

4 162.1109 [M+H]+ Carnitine C7H15NO3 0.0051 ↑

5 169.0083 [M+H]+ Phosphoenolpyruvate C3H5O6P 0.011 ↑

6 189.1602 [M+H]+ Trimethyllysine C9H20N2O2 0.0031 ↑

7 233.1104 [M+H]+ Melatonin C13H16N2O2 0.00067 ↓

8 246.1695 [M+H]+ Isovalerylcarnitine C12H23NO4 0.0006 ↑

9 276.1441 [M+H]+ Glutarylcarnitine C12H21NO6 0.0000000022 ↓

10 286.2010 [M+H]+ Octenoylcarnitine C15H27NO4 0.00024 ↑

11 316.2465 [M+H]+ Decanoylcarnitine C17H33NO4 0.000079 ↓

12 810.1328 [M+H]+ Acetyl-CoA C23H38N7O17P3S 0.041 ↑

13 - Carnitine palmitoyltransferase CPT1A 0.0084 ↑

14 - Carnitine acylcarnitine translocase-
like protein (CACL) SLC25A29 0.0039 ↑

15 - Dihydrolipoyl dehydrogenase 
(Pyruvate dehydrogenase complex) DLD 0.0000001 ↓

aThe mRNA expression levels are from our microarray experiment, which was reported previously [23].
bThe p-values are from Student’s t-tests.
cThe trend of the marker levels in the BC group. ↑ and ↓ indicate increased and decreased levels, respectively in the cancer 
group.
dTentative identification.
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Survival prediction

In clinical situation, the prediction of survival of 
cancer patients after diagnosis is critical. However, none 
of the previous metabolomics studies on BC have asked 
whether metabolomics can be used to predict survival 
time. This probably reflects the heterogeneity of the study 

populations, the fact that various treatment modalities 
were used, and the difficulties associated with following 
up enough patients for the entire duration of survival. In 
the present study, 34 of the 55 patients with MIBC (61.8%) 
underwent radical cystectomy while 26 (47.3%) received 
systemic chemotherapy. To date, 30 (54.5%) patients 
remain alive, 23 (41.8%) have died, and two (3.6%) were 
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Figure 2: Box plots of the levels of potential metabolomic markers that could be used to distinguish BC patients from 
control subjects. The p-values of Student’s t-test are indicated.
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Figure 3: Cross-validation with an OPLS-DA model and multivariate ROC analysis. (A) Schematic depiction of the overall 
procedure of cross-validation analysis. The test set was created by randomly selecting one third of the entire sample. A prediction model 
was built with the rest of the samples (training set), after which the models were used to predict the cancer status of the test set. Diagnostic 
performance was assessed by either OPLS-DA or PLS-DA based ROC curve analysis. (B) Prediction of the cancer status using the OPLS-
DA model. The boxes represent BC patients while the dots represent control subjects. The green samples represent the test set. The samples 
represented by open green symbols are mispredicted samples. The dichotomic decision of prediction was made by using the a priori 
value of 0.5 for the Y variable from the OPLS-DA model. Of the 46 cancer samples, 42 were predicted to be from cancer patients (91.3% 
sensitivity) while 37 of the 40 control samples were predicted to be from control subjects (92.5% specificity). (C) PLS-DA-based ROC 
curve analysis using the same test set revealed a sensitivity of 85% and specificity of 85%. The area under the curve (AUC) value was 0.937.
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lost during follow-up. Of the 23 patients who died, 17 died 
due to cancer-related events. To determine whether our 
metabolomic approach could be used to predict post-
diagnosis survival time, a multivariate partial least square 
(PLS) regression was applied for the 17 patients who died. 
The partial least square (PLS) prediction model was built 

with three components (R2 = 0.991, Q2 = 0.404) using the 
metabolomic profile as independent variables and the 
cancer-specific survival time as a dependent variable. 
Then, the individual cancer specific survival time was 
predicted using leave-one-out analysis, and the predicted 
values were compared with the actual survival time. 
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The analysis gave R2 value of 0.405 with p = 0.0046 
between the predicted and actual values (Figure 4), 
suggesting that the metabolomic profile might be useful in 
predicting the cancer-specific survival time of BC patients.

DISCUSSION

BC is usually diagnosed in clinical practice by 
urinary cytology and cystoscopy. Although urinary 
cytology is convenient and detects BC with high 
specificity, its diagnostic ability is rather disappointing 
due to its low sensitivity (40–76%) [17]. Moreover, 
cystoscopic examination is highly invasive and relatively 
expensive, and thus, majority of the patients would be 
distressed. Therefore, new diagnostic tools that can 
distinguish BC from non-cancerous conditions with 
better sensitivity and specificity are needed. To this end, 
a number of urine-based tests have been developed. 
These include tests based on bladder tumor antigen 
(BTA), nuclear matrix protein 22 (NMP22), urine fibrin 
and fibrinogen degradation products (FDP), ImmunoCyt, 
and FISH (UroVysion) [18, 19]. However, the diagnostic 
capability of all of these tests is insufficient, and can 
replace cystoscopy or urinary cytology [20]. The urinary 
metabolomics-based diagnostic approach described in the 
present study may be more promising as it is clinically 
relevant, performs well, and is convenient. The clinical 
relevance of this approach is based on the fact that urine is 
stored in the bladder and is in direct contact with bladder 
tissue. Thus, its metabolomic profile may closely reflect 
the status of the bladder tissue, making it more clinically 
relevant for BC diagnosis than the blood samples used 
in some studies [21, 22]. With regard to its diagnostic 
performance, the high sensitivity and specificity shown 
in this study using a large number of patients (> 250) 

gives reliability on its performance. Especially with the 
high sensitivity of above 85% without compromising 
the specificity, it can be compared with urinary cytology 
which suffers from the low sensitivity. It is also important 
that any diagnostic test should be convenient and quick in 
real practice and that the diagnostic decision can be made 
relatively easily. Our metabolomics approach only needs 
5 uL of urine (1/5000th of the volume of the typical urine 
sample) which can be readily obtained during a routine 
check-up without affecting the original tests. Moreover, 
compared to the cystoscopy involving local anesthesia 
and pain, our urinary metabolomics-based diagnostic 
approach is non-invasive. The sample can be analyzed 
in 35 minutes and the decision can be made relatively 
quickly and objectively, as it does not require the expertise 
of experienced pathologists. Given these merits, this 
urinary metabolomics-based diagnostic approach may 
have the potential to augment or even replace the cytology 
or cystoscopic diagnostic modalities that are currently 
being used.

The present study showed that the cancer group 
has elevated levels of urinary acetyl-CoA and carnitine, 
and several acylcarnitines were found to contribute 
to the differentiation between the cancer and control 
groups. As carnitine is essential for the entry of fatty 
acid into the mitochondria for oxidation, and acetyl-
CoA is the final product of this oxidation event, these 
results suggest that fatty acid oxidation might be an 
important factor in determining the cancer status. We 
have previously published microarray analyses of BCs 
[23]: when we examined the gene expression levels 
of the enzymes involved in fatty acid oxidation, we 
found that BCs generally expressed significantly higher 
levels of the carnitine palmitoyltransferase 1A (CPT1A) 
than control tissues (p = 0.0084; Table 1). Carnitine 
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Figure 4: Prediction of cancer-specific survival time. The PLS prediction model was obtained with three components (R2 = 0.991, 
Q2 = 0.404). The X-axis corresponds to the predicted values that were calculated by using the PLS regression followed by the leave-one-out 
prediction. The Y-axis corresponds to the actual cancer-specific survival time. The R-squared value of the linear regression is 0.405 and the 
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palmitoyltransferase is a key protein that uses carnitine 
to transfer fatty acid into mitochondria for oxidation. 
In addition, the increase was more significant in MIBC 
(p = 0.0003) than NMIBC (p = 0.089), and its level was 
different significantly between the two types of cancer (p = 
0.028) (Supplementary Figure S3A). Therefore, carnitine 
palmitoyltransferase 1A (CPT1A) expression may also 
correlate with the aggressiveness of BC, which may be 
an interesting subject for future studies. Supporting it 
is that in highly metastatic alveolar rhabdomyosarcoma 
cancer cells, CPT1A expression correlates with cell 
motility [24]. It is also interesting to see that many 
efforts have been made to develop inhibitors of CPT 
as anticancer agents [25, 26]. Our observations suggest 
that such inhibitors may be useful in BC treatment. Our 
microarray data also showed that BCs expressed carnitine 
acylcarnitine translocase-like protein (CACL, gene 
symbol: SLC25A29), another enzyme involved in fatty 
acid transport into mitochondria [27, 28], at higher levels 
than control tissues (p = 0.0039; Table 1). Both MIBCs 
and NMIBCs expressed significantly higher levels of 
carnitine acylcarnitine translocase-like protein (CACL) 
than control tissues (p = 0.0016 and 0.016, respectively, 

Supplementary Figure S3B), but the expression levels in 
MIBC and NMIBC was not different (p = 0.647). Although 
not so much study has been done for CACL as CPT1A, 
strategies that target it may also have therapeutic potential 
in both subtypes of BC. Thus, along with other studies 
implicating fatty acid oxidation in various carcinogeneses 
[29-31], our metabolomics study and microarray analysis 
indicate that betaoxidation may play an important role 
in BC tumorigenesis and possibly aggressiveness. The 
level of acetyl-CoA, another molecule in betaoxidation, 
can be affected by input from pyruvate via the 
pyruvate dehydrogenase complex (PDC). We therefore 
examined the expression of components of the pyruvate 
dehydrogenase complex (PDC), and found that the third 
component of the complex, dihydrolipoyl dehydrogenase 
(DLD), is significantly reduced in bladder cancer (p < 10-7; 
Table 1). This suggests that the higher acetyl-CoA levels in 
BC are largely due to elevated betaoxidation, rather than 
the result of conversion from pyruvate. This suggestion 
is consistent with the Warburg effect in most cancer cells 
[32], where pyruvate is converted to lactate rather than 
acetyl-CoA. The overall pathways affected by BC are 
summarized in Figure 5.
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study are indicated in red. The genes whose levels are modulated in our microarray analysis are indicated in blue ellipses.
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Several other studies have examined the 
metabolomics profiles in BC but most involved fewer than 
45 cancer patients [13-16, 21, 22], except the one with 
83 cancer patients and 51 controls [33]. In addition, the 
lack of cross validation involving a test set in many of the 
studies may have limited the application of the study in 
real clinical situation. By comparison, the present study 
has by far the largest number of patients in both the cancer 
(n = 138) and control (n = 121) groups, which suggest 
that the statistical results are more reliable. In addition, 
we performed OPLS-DA cross-validation analysis using 
as much as one third of the entire sample set as the test 
set. Indeed, our test set (n = 40 for the control group and 
n = 46 for the cancer group) was larger than or comparable 
to the groups used in most of the studies described 
above. In relation to this, one study did objectively 
evaluate the predictive value of their analysis platform 
with an independent test set [22]. They found that their 
OPLS-DA model had 100% sensitivity and specificity. 
However, only 20 patients comprised the entire BC group 
in this study. This suggests that these performance data 
should be interpreted with care. Considering our and 
other metabolomics reports [13-15, 34], more realistic 
sensitivity and specificity estimates would probably 
be about 85–92.5%. Equally importantly, patients with 
benign hematuria were included in the control group in 
the present study to ensure that our model would continue 
to differentiate between BC patients and controls in the 
presence of hematuria. Since patients with BC usually 
present with hematuria, but hematuria can also be present 
in patients without cancer, hematuria can be a serious 
confounding variable. Indeed, the control patients with 
hematuria clearly clustered between the cancer patients and 
the controls without hematuria (see Figure 1A-B). Despite 
the presence of many patients with benign hematuria, our 
model could differentiate between the control and cancer 
groups with excellent specificity and sensitivity. Previous 
studies with hematuric patients either did not include them 
in the control group [21] or analyzed serum, which may 
not be as confounded by hematuria as urine-based analyses 
[22]. Thus, the inclusion of patients with benign hematuria 
in the present study suggests that the model we developed 
is likely to be reliable in a real clinical situation.

MATERIALS AND METHODS

Chemicals

Acetonitrile was purchased from Honeywell 
Burdick & Jackson (Morristown, NJ) and formic acid was 
obtained from Fluka (St. Louis, MO). All other solvents 
were of HPLC grade.

Patients and urine samples

A total of 259 subjects, 138 with primary urothelial 
carcinoma of the urinary bladder and 121 controls, were 

enrolled in the study. Controls consisted of 69 healthy 
people who visited the hospital for medical check-ups and 
52 patients with microscopic hematuria that was due to 
non-malignant conditions. The controls were selected so 
that their ages were similar to the ages of the patients with 
cancer. The collection and analysis of all samples were 
approved by the Institutional Review Board of Chungbuk 
National University and written informed consent was 
obtained from each subject (IRB approval number 2006-
01-001). Urine samples were collected in the morning and 
centrifuged at 25,000 rpm for 15 min. The supernatant 
and sediment were aliquoted separately into Eppendorf 
tubes and stored at -20 °C until use. All primary tumor 
samples were obtained from patients who underwent 
transurethral resection (TUR) or radical cystectomy. All 
were histologically verified to have urothelial carcinoma. 
Tumors were staged and graded according to the 2002 
TNM classification and the 1973 WHO grading system, 
respectively. The biospecimens for this study were 
provided by the Chungbuk National University Hospital, 
a member of the National Biobank of Korea, which is 
supported by the Ministry of Health, Welfare and Family 
Affairs.

Liquid chromatography-mass spectrometry  
(LC-MS)

The frozen urine samples were thawed and then 
centrifuged at 15,000 × g for 10 min at 4 °C to remove 
particulate matter. Chromatographic separation was 
performed on a Kinetex C18 column (2.6 µm, 100 × 
4.6 mm; Phenomenex, USA) by using an Agilent 1200 
Infinity Series liquid chromatography system. The column 
temperature was 35 °C with a flow rate of 0.35 mL/min 
and the autosampler cooler temperature was set at 4 °C 
with an injection volume of 5 µL. Analytes were eluted 
with a mobile phase composed of 0.1% formic acid in 
water (A) and acetonitrile with 0.1% formic acid (B). 
Gradient conditions were as follows: 0–14 min gradient 
5–25% B, 14–19 min gradient 25–40% B, and 19–23 min 
gradient 40–95% B. After this, the solvent composition 
was maintained at 95% B for 6 min, followed by a 
return to the starting conditions and re-equilibration of 
the column for 6 min. Mass spectrometry experiments 
were performed on a Q-TOF (6530 Accurate-Mass, 
Agilent Technologies, Santa Clara, CA) equipped with 
ESI sources. Data were acquired in positive mode. The 
measurement conditions were as follows: ESI source 
voltage of 4 kV, gas temperature of 350 °C, sheath gas 
flow of 12 L/min, nebulizer gas at 30 psi. The scan range 
was 85-1000 m/z.

Data processing and statistical analysis

The LC-MS raw data were converted and processed 
by using MZmine 2.10 (mzmine.sourceforge.net) as 
described in a previous report [35]. Briefly, chromatograms 
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were built and peaks were recognized by using the 
local minimum search function, and the ion intensities, 
matching m/z, and retention time were grouped into peak 
lists. Later, these peak lists were exported individually and 
imported into MetaboAnalyst (www.metaboanalyst.ca). 
The peaks were aligned and normalized by the sum of all 
detected peaks. The processed and normalized data were 
imported into SIMCA-P (Umetrics, Umea, Sweden) for 
multivariate statistical analysis. To distinguish between all 
of the groups (control, NMIBC, and MIBC), PLS-DA was 
performed. OPLS-DA was used for one-to-one distinction 
between any two groups and marker detection [36, 37]. 
The survival prediction was performed by using PLS 
regression using the metabolite profile as the independent 
variable. The sensitivity and specificity of the method 
used to distinguish between controls and cancer patients 
were calculated by first removing one third of the samples, 
which served as a test set. The multivariate model obtained 
with the remaining samples was then used to predict 
the cancer status of the samples. All of the multivariate 
models were constructed by iterative procedures until the 
predictability value (Q2) stopped increasing.
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