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Figure 6: Changes of gene expression in HepG2 cells after incubated with individual OCP. mRNA A. and protein expression 
C. of genes in HepG2 cells incubated with increased concentration of p’, p’-DDE (0, 1, 10ng/mL). mRNA B. and protein expression D. of 
genes in HepG2 cells incubated with increased concentration of β -HCH (0, 10, 100ng/mL). ‘*’ represents P < 0.05 as compared with the 
concentration at 0 ng/mL.

Figure 7: Schematic showing changes of hepatic lipid metabolism in hepatocyte exposed to high level of organochlorine 
pesticides (p’, p’-DDE and β-HCH). (1) Increased hepatic canalicular cholesterol transporters ABCG5 and ABCG8 associated with 
higher biliary cholesterol saturation index; (2) Increased expression of key enzymes in fatty acid synthesis pathway and high level of hepatic 
total fatty acid content and fatty acid composition. Abbrieviations: ACC: acetyl-CoA carboxylase; ABC: ATP binding cassette; BA: bile 
acids; Chol: cholesterol; CSI: cholesterol saturation index; CYP7A1: cholesterol 7 α -hydroxylase, CYP8B1: cholesterol 12α-hydrolylase; 
CYP27: cholesterol 27-hydroxylase; FA: fatty acid; FAS: fatty acid synthase; HDL: high density lipoprotein; HMGCR: 3-hydroxy-3-
methylglutaryl coenzyme A reductase; LDLr: low density lipoprotein receptor; NRs: nuclear receptors; OCPs: organochlorine pesticides; 
SCD1: stearoyl CoA desaturase 1; SREBP1c: sterol regulatory element biding protein 1c; SRB1: scavenger receptor B type 1.
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and p’, p’-DDE in HepG2 cells in vitro. ABCG5/G8 are 
key players in regulating biliary cholesterol content [21, 
22]. Increased hepatic expression of ABCG5 and ABCG8 
mRNA in gallstone patients has been reported [30], which 
represents the main defect leading to hyper-secretion of 
cholesterol in hepatocyte. In the patients with high OCPs 
level, higher CSI in gallbladder was observed as well, 
suggesting the presence of an enhanced biliary secretion 
of cholesterol into bile by hepatocyte. Moreover, we 
found lower ABCB11 expression in the high-level group 
suggested presence of decreased biliary bile acid secretion 
by hepatocytes, even no difference in bile acid synthesis 
existed. 

In this study, we also found defects in hepatic fatty 
acid synthesis patients with high-level of β-HCH and 
p’, p’-DDE as evidenced by higher expression of FAS, 
SCD-1 , increased hepatic total fatty acid and individual 
fatty acids contents (Figure 4 and 5). This was due to the 
activation of hepatic SREBP1c which is the key regulator 
of lipogenesis gene [23]. Mixed OCPs in high fat diet 
could induce hepatic SREBP1c expression in rats [31] 
and led to liver steatosis. In rats fed with high fat diet, 
p’, p’-DDE exposure can induce liver levels of fatty acids 
as palmitic, stearic, oleic acids [32]. Using HepG2 cells, 
we also observed an induction of genes in lipogenesis 
by β−HCH and p’, p’-DDE in vitro (Figure 5). These 
observations are consistent with what we found in human 
liver from patients with high OCPs levels.

In conclusion, our study provided important data 
showing the extent of OCPs accumulation in adipose 
tissue in non-occupational subjects living in East China 
and found strong association between high OCPs levels in 
adipose tissue and gallstone disease. The mechanistically 
molecular changes in hepatic lipid metabolism induced 
by OCPs were schematically shown in Figure 7. Due 
to the difficulty to obtain adipose tissue in human, such 
data are rare and may provide important insights for an 
understanding the potential chronic influences on hepatic 
metabolic homeostasis by OCPs. In general population, 
people are experienced background exposure to OCPs 
through food consumption. OCPs can accumulate in 
adipose tissue for decades and are resistant to degradation 
and such chronic low-level exposure seems not to be 
risk-free. Our present findings suggest the public health 
significance of environmental OCPs in relation with 
metabolic disorders in human.

Materials and Methods

Patients and sample collection

About 200~800 mg great omentum adipose tissue 
samples were collected from 194 patients with cholesterol 
gallstone disease during laparoscopic cholecystectomy 

between May 2008 and December 2011. A wedge of about 
0.2~0.5 gram liver biopsies were taken from the edge of 
right liver during the laparoscopic cholecystectomy in 
60 patients with gallstone disease. Cholesterol gallstones 
were confirmed by visual inspection of the typical cut-
surface of gallstones or, when necessary, by enzymatic 
cholesterol analysis. During the same period, great 
omentum adipose tissue from 190 gallstone-free patients 
(as controls) undergoing abdominal surgery unrelated 
to the gallstone disease (36% appendicitis surgery, 21% 
inguinal hernia, 16% liver and spleen rupture surgery, and 
27% other surgery). All the controls were proved to be 
gallstone-free by B-type ultrasonography. All collected 
tissue samples were snap-frozen in liquid nitrogen, and 
then stored at -80°C until analysis. The study protocol 
conformed to the ethical guidelines of the Declaration 
of Helsinki and was approved by the Ethical Committee 
at Shanghai East Hospital, Tongji University School 
of Medicine and Shanghai Ruijin Hospital, Shanghai 
Jiaotong University School of Medicine. Written informed 
consent was obtained from each patient.

Organochlorine analyses

Sample preparation and purification

The total adipose tissue sample was homogenized 
twice with 3 mL of acetonitrile (plus 1 mL of formic acid). 
All the homogenate (plus 1 gram of sodium chloride) was 
collected to centrifuge at 10,000 r/min for 5 min. The 
supernatant was cleaned by SPE PSA cartridges (Waters, 
USA) to remove the impurities, which was washed 
with 25 mL of acetonitrile- toluene (3:1). All the eluate 
was concentrated to about 1 mL by rotatory evaporator 
and dried by nitrogen. One mL of hexane was added to 
dissolve the pesticides and then the sample extraction 
solution was centrifuged at 14,000 r/min for 5 min at the 
temperature of 4°C. Then the supernatant mixed with 
the internal standard solution (heptachlor epoxide) was 
analyzed by GC-MS. 
Instrumental analysis

The total of 12 OCPs were analyzed simultaneously 
by GC-MS using Agilent 7890A gas chromatograph, 
operating in EI mode. The final sample extract 
was injected onto a DB-1701 capillary column 
(30m×0.25mm×0.25μm, Agilent, USA) in the split mode 
(20:1) using helium as carrier gas at a constant flow rate of 
1.2 mL/min. The temperature of the injector was 290°C. 
The oven temperature was programmed to warm up from 
40°C (holding for 1min) to 130°C at a rate of 30°C /
min, then to 250°C at a rate of 5°C / min, and then to 
300°C (5min) at a rate of 10°C / min. Ionization energy 
was 70eV. The ion source temperature was 230°C and the 
quadruple rod temperature was 150°C. For each chemical, 
the target ions were monitored for quantification (Figure 
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1). The chromatogram of all the analytical contaminants 
was shown in Figure 1.
Quality control and assurance

The analytical method was validated and showed 
no interference in the retention time (tR) region of the 
test substances. The levels of quantification (LOQ) of 
all chemicals in the adipose tissue sample were between 
2.50~19.0 ng/g, with recoveries between 72.8%~104.5%. 
The laboratory reagent, blank samples, and spiked 
samples, were treated and analyzed with the same method 
as the actual samples. The relative standard deviation 
(RSD) of all the controls was between 9.65%~16.8%, 
which showed that the method was stable.

Cell culture

HepG2 cells were grown in DMEM supplemented 
with 10% FBS. Cells were plated in 35 mm dishes and 
reached ~70% confluence. After treated with p’, p’-DDE 
(final concentration: 0, 1, 10 ng/ml) or β-HCH (final 
concentration: 0, 10, 100 ng/ml) for 24 hours, cells were 
collected. All experiments were performed in triplicates 
and repeated at least twice.

Relative RNA expression level measurement

Total RNA of liver tissue or HepG2 cells was 
extracted with Trizol (Invitrogen, Calsbad, CA) and 
reverse-transcribed into cDNA. Real-time quantitative 
PCR for hepatic genes involved in lipid metabolism was 
performed in triplicates using SYBR-Green (Power Master 
Mix Sybr Green, Applied Biosystems, Foster City, CA). 
All the primer sequences are available on request. Data 
were calculated by the delta-Ct method using cyclophilin 
A as the internal control.

Hepatic fatty acids and cholesterol content 
measurement

Hepatic fatty acids contents were measured as 
previously described [33, 34]. In brief, about 20 mg liver 
tissue was homogenized in ice cold PBS. Fatty acids were 
extracted by hexane and isopropanol. After incubated 
with methanol and sulfuric acid, the products, fatty 
acid methyl esters, were separated and identified by gas 
chromatography. Hepatic cholesterol concentration was 
assayed by gas chromatography mass spectrometry as 
previously reported [30].

Analysis of biliary lipids composition 

Biliary cholesterol, total bile acids, and 
phospholipids in gallbladder bile were measured as 
described previously [30]. The cholesterol saturation index 
(CSI) was calculated using Carey’s critical table [35].

Western blot

Liver homogenates or cell lysates were separated on 
SDS-PAGE gel and then transferred onto nitrocellulose 
membrane. After blocking in 5% non-fat dry milk in 
PBST, the membranes were incubated overnight at 4°C 
with specific primary antibody against FAS, SCD1, 
SREBP1c or ABCG8. After washing, secondary antibodies 
were incubated. The results were detected and recorded 
with Molecular Imager camera (Bio-Rad, Hercules, CA, 
USA) and densitometry analyses were performed for the 
quantification of results with GAPDH as a loading control.

Statistical analyses

Data analysis was performed using SAS version 
9.1 (SAS Institute Inc., Cary, NC, USA). Differences in 
select variables between groups were evaluated using the 
Student t test or χ2 test. The variables for concentrations of 
OCPs were evaluated using Mann-Whitney’s U-test. 

The OCPs concentrations were categorized into four 
groups, on the basis of percentile intervals <25%, 25% 
to <50%, 50% to <75%, and ≥75%. Logistic regression 
was performed to obtain the odds ratio (OR) for risk of 
gallstone disease across the categories of OCPs, adjusting 
for sex, age, and BMI using the lowest category (25%) as 
the reference group. 

Multivariable linear regression was used to 
explore relationships between OCPs concentrations 
and biochemical index (e.g. serum concentrations of 
blood glucose, total cholesterol, triglyceride and et al.). 
Covariates considered for inclusion in the multivariate 
regression linear models included age, gender, and BMI. 
Age and BMI were modeled as continuous variables.
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