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ABSTRACT

Risk assessment and treatment choice remains a challenge in early non-small-
cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved 
in the risk of early relapse (ER) compared to no relapse (NR) in resected lung 
adenocarcinoma (AD) patients using a combination of high throughput technology 
and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage 
I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were 
subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network 
computational analysis was performed to select predictive genes. An independent set 
of 79 ADs stage I samples was used to validate selected genes by Q-PCR.

From microarray analysis we selected 50 genes, using the fold change ratio of ER 
versus NR. They were validated both in pool and individually in patient samples (ER 
and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance 
between two methods. They were used to perform a computational gene network 
analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 
decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an 
independent dataset of ADs samples, we showed that both high FABP3 expression and 
low SCGB1A1 expression was associated with a worse disease-free survival (DFS).

Our results indicate that it is possible to define, through gene expression and 
computational analysis, a characteristic gene profiling of patients with an increased 
risk of relapse that may become a tool for patient selection for adjuvant therapy.

INTRODUCTION

Lung cancer is the most common cause of death from 
cancer worldwide, and non-small cell lung cancer (NSCLC: 
20% squamous and 80% adenocarcinoma (AD) histology) 
accounts for almost 80% of such deaths [1]. Approximately 
25-30% of patients with NSCLC present with localized 
disease at the time of diagnosis and undergo surgery with 

curative intent. Despite complete tumor resection, however, 
the 5-year survival of these patients is poor and 40 to 70% 
of them will develop systemic disease with or without local 
relapses and will eventually die from it. No reliable clinical 
or molecular predictors are currently available to identify 
those at high risk for developing recurrent disease and the 
tumor-node-metastasis (TNM) staging system[2] remains 
the most powerful tool to predict prognosis in these patients. 
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After radical surgery, adjuvant cisplatin-based chemotherapy 
(four cycles) has been established as the standard care in 
stage II and III patients with good performance status, rapid 
postoperative recovery and adequate organ function based 
on the results of three phase III trials and of the LACE 
meta-analysis showing an absolute gain of 5.3% in 5-year 
survival [3]. The role of adjuvant chemotherapy in stage I 
radically resected disease remains mostly undetermined 
due to both underrepresentation in clinical trials [4] and the 
survival benefit expected to be small in this population. Most 
guidelines state that it can be considered for selected patients 
(younger age, good performance status, large tumors, 
visceral pleural invasion and inadequate staging) with stage 
IB (sixth TNM classification) disease.

Advances in genome-wide sequencing and 
microarray analysis have stimulated research in molecular 
prognostics and have allowed the identification of 
molecular signatures that can promote a more precise 
classification and prognostication of human cancers. 
Recent studies in patients with early-stage NSCLC have 
shown that genomic profiles constructed from patient series 
with long-term follow-up are able to outperform standard 
pathologic TNM staging in estimating risk of disease 
recurrence [5–9]. However, the signatures often contain 
large numbers of genes with limited information about 
their functional importance. This problem limits the clinical 
application of those signatures. The aim of this study was to 
identify novel genes increased or decreased in early relapse 
(ER) compared to no relapse (NR) lung cancer AD stage I 
patients and determine the role of a specific signature of the 
tumor to predict patient prognosis. In this study we used 
a computational biology approach to construct a survival-
related gene network in ADs and to identify genes which 
were consistently co-expressed with many survival-related 
genes important in multiple biological processes. The goal 
is to provide clinical oncologists with more information on 
tumor biology which could guide therapeutic interventions.

RESULTS

Patient characteristics

We identified 18 patients with stage I disease (TNM 
version 7.0) from a series of 110 consecutive early stage 
radically resected AD patients who were referred to the 
Thoracic Surgery Unit of the Perugia University Hospital, 
Italy. Thirteen of these 18 patients were defined as NR 
(patients without evidence of relapse: median follow-
up 133.7 months, range 51.6-145.8) while 5 of 18 were 
classified as ER (patients relapsed within a year: median 
follow-up 10.4 months, range 0.5-54.2). Normal lung 
(NL) tissue taken from distant or contralateral lung from 
patients with AD was used as calibrator for microarray 
and quantitative PCR (Q-PCR) analysis. Clinical and 
pathologic characteristics of the two groups (n.13 NR 
and n.5 ER) are shown in Table 1. Median age was 64 

(range 44-84) in NR patients and 67.4 (range 56-77) in ER 
patients; most of them were male (76.9% NR, 100% ER).

Data analysis and real time Q-PCR validation

Microarray analysis showed a panel of 436 
differentially expressed genes for NR vs NL (p<0.01) 
(232 increased and 204 decreased) and a panel of 342 
differentially expressed genes for ER vs NL (p<0.01) (179 
increased and 163 decreased). The heat map plot for gene 
expression ratio (the (log10) of ER vs NL, NR vs NL and 
ER vs NR) is reported in Figure 1A. Based on the lower 
(0.10) and upper (0.90) quartiles of the distribution of the 
logarithm of the fold of ER versus NR, we selected 50 
genes (19 increased and 31 decreased) shown in Figure 1B 
(additional data are available in Supplementary Table S1 
and Table S2). We validated by Q-PCR the expression 
levels of 19 increased and 31 decreased genes in three 
pools and in each individual patient sample. The logarithm 
of the ratio ER versus NR for the increased and decreased 
genes is shown in Figures 2A and 2B, respectively.

Eighteen of the 19 increased genes showed a 
concordance of 94.7% between expression levels of 
microarray and those of the Q-PCR pool (r=0.32, 
p=0.004): only the IL1R1 gene showed a different value in 
the Q-PCR pool than the value of the microarray. Similar 
results were observed in the decreased genes (30 of the 31, 
(r=0.36 p<0.001): only the REG4 gene showed a different 
value in the Q-PCR pool than the value of the microarray.

Fourteen of the 19 increased genes showed a 
concordance of 73.6% between expression levels of 
microarray and those of the patient Q-PCR (r=0.29, 
p=0.36): 4 genes (PPBP, ITGB8, IL1RL1, INSL4) showed 
a different value in the patient sample Q-PCR than that 
of the microarray. Twenty-five of the 31 decreased genes 
showed a concordance of 80.6% between expression 
levels of microarray and those of the patient Q-PCR 
(r=0.26, p=0.24): six genes (IGHD, GKN2, WIF1, KLB, 
PAPPA2, MSMB) showed a different value in the patient 
sample Q-PCR than the value of the microarray.

Computational analysis

The selected 14 increased and 25 decreased genes 
were used to perform a computational gene network 
analysis. The goal of computational analysis is to select a 
few key genes from the starting group that are relevant in 
the activated and inhibited gene networks.

The activated gene network was generated with 
GeneMania tools using as query input the 14 increased 
genes. Figure 3A shows the GeneMania network output- 
obtained setting as inputs: the human organism data, 
the query gene-based as weighting method, suggested 
when the input gene list contains more than 5 genes, 
and co-expression, pathways and predicted as network 
interactions [10]. The black nodes are the input genes (H19 
gene symbol was replaced with the alias CDKN1C gene 
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Figure 1: Microarray results. A. Heat map plot for gene expression ratio- the (log10) of ER vs Normal, NR vs Normal and ER vs 
NR. B. Heat map plot for the selected genes: lower (0.10) and upper (0.90) quartiles of the distribution of the logarithm of the fold of ER 
versus NR.

Table 1: Patient characteristics

Characteristics Patients NR (n. 13) Patients ER (n. 5)

Median age, years 64 (44-84) 67.4 (56-77)

Median follow-up, months (range) 133.7 (51.6-145.8) 10.4 (0.5-54.2)

Gender: Male/Female (%) 10/3 (76.9/23.1) 5/0 (100/0)

Ever smokers: Yes/No (%) 12/1 (92.3/7.7) 5/0 (100/0)

Stage: IA/1B (%) 8/5 (61.5/38.5) 1/4 (20/80)
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symbol), the grey nodes are the recommended nodes (the 
dimensions are proportional to the GeneMania network 
score) and the violet link thickness is related to the weight 
of co-expression interaction inferred from the public data 
and used in the network generation algorithms [11].

The GeneMania network was elaborated with 
the ModuLand plug-in that provides an algorithm for 
determining extensively overlapping network modules 
[12]. Figure 3B shows the four modules generated for the 
increased GeneMania network. The nodes in the same 

module have the same color. ModuLand also identifies 
several hierarchical layers of modules, where meta-nodes 
of the higher hierarchical layer represent modules of 
the lower layer. The tool assigned module cores, which 
predict the function of the whole module, and determine 
key nodes that connect two or multiple modules. For the 
activated gene network the key nodes were HOXA10, 
CLCA2, AKR1B10, FABP3 (Figure 3C).

As for the increased genes, we applied the same 
steps as those used for the decreased genes (XIST gene 

Figure 2: Validation experiments for the increased and decreased selected genes (orange diamond), Q-PCR pool (cyan 
square) and Q-PCR patients (violet triangle). A. Logarithm of the ratio ER vs NR for the increased genes. B. Logarithm of the ratio 
ER vs NR for the decreased genes.
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symbol was replaced with the alias ECEL1 gene symbol). 
Figure 3D shows the GeneMania output. In this case 
there are yellow links that are the predicted interactions 
not proposed by the recommender systems in increased 
genes. We applied the ModuLand algorithm to the 
decreased GeneMania network and five modules were 
obtained (Figure 3E). The selected genes as the central 
nodes that best predict the function of the five modules 
obtained with ModuLand were: SCGB1A1, PGC, CHIA 
and S100P (Figure 3F). CHIA and S100P were not 

included in the selected decreased genes but are proposed 
by the GeneMania recommender systems that integrate 
the query input information with the public [13]. The 
same methodology applied to the increased genes was 
reproduced to select the validated decreased genes using 
community centrality score [14]. CHIA and S100P were 
replaced with TFF1, PSCA, SPRR1B and PRSS1 that 
were the validated genes with the highest value of the 
score for their module. The 4 increased and 6 decreased 
genes with their functions are shown in Table 2.

Figure 3: Computational analysis for increased and decreased genes. A. GeneMANIA networks of validated genes  
B. Community Landscape Analysis obtained with ModuLand plug-in. The four modules were plotted in the graph using a different color for 
each group of nodes in the same module. C. Key nodes that predict the function of all four modules. D. GeneMANIA networks of validated 
genes E. Community Landscape Analysis obtained with ModuLand plug-in. The five modules were plotted in the graph using a different 
color for each group of nodes in the same module. F. Key nodes that predict the function of all five modules.
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Table 2: Function of selected genes
Gene Name Expression Functions References

HOXA10 Increased

Homebox A10 (HOXA10) is part of the A cluster, on chromosome 7, 
of the class of transcription factors called homebox genes. It encodes 
a DNA-binding transcription factor that may regulate gene expression, 
morphogenesis, and differentiation. More specifically, it may function 
in fertility, embryo viability, and regulation of hematopoietic lineage 
commitment

[26]

CLCA2 Increased

The protein encoded by Chloride channel accessory 2 (CLCA2) gene, on 
chromosome 1, belongs to the calcium sensitive chloride conductance 
protein family. Since this protein is expressed predominantly in trachea 
and lung, it is suggested to play a role in the complex pathogenesis of 
cystic fibrosis. It may also serve as adhesion molecule for lung metastatic 
cancer cells, mediating vascular arrest and colonization, and furthermore, 
it has been implicated to act as a tumor suppressor gene for breast cancer.

[47] [48]

AKR1B10 Increased

Aaldo-keto reductase family 1, member B10 (AKR1B10) gene encodes 
a member of the aldo/keto reductase superfamily, which consists of more 
than 40 known enzymes and proteins. It is highly expressed in lung, 
adrenal gland, small intestine and colon and may play an important role in 
liver carcinogenesis.

[49]

FABP3 Increased

The intracellular fatty acid-binding proteins (FABPs) belong to a 
multigene family. FABPs are divided into at least three distinct types, 
hepatic-, intestinal- and cardiac-type. They participate in the uptake, 
intracellular metabolism and/or transport of long-chain fatty acids, in the 
modulation of cell growth and proliferation. FABP3 gene contains four 
exons and its function is to arrest growth of mammary epithelial cells. 
This gene is a candidate tumor suppressor gene for human breast cancer.

[50]

SCGB1A1 Decreased

Secretoglobin, family 1A, member 1(SCGB1A1) gene encodes a member 
of the secretoglobin family of small secreted proteins. The encoded protein 
has been implicated in numerous functions including anti-inflammation, 
inhibition of phospholipase A2 and the sequestering of hydrophobic 
ligands. Defects in this gene are associated with a susceptibility to asthma

[51]

PSCA Decreased

Prostate stem cell antigen (PSCA) gene encodes a 
glycosylphosphatidylinositol-anchored cell membrane glycoprotein. In 
addition to being highly expressed in the prostate it is also expressed in the 
bladder, placenta, colon, kidney and stomach. This gene is up-regulated in 
a large proportion of prostate cancers and is also detected in cancers of the 
bladder and pancreas.
The function of PSCA in tumor biology and the regulatory mechanism of 
PSCA expression still remains unknown.

[30]

PGC Decreased

Progastricsin (pepsinogen C) (PGC) gene encodes an aspartic proteinase 
that belongs to the peptidase family A1. The encoded protein is a 
digestive enzyme that is produced in the stomach and constitutes a major 
component of the gastric mucosa. This protein is also secreted into the 
serum. This protein is synthesized as an inactive zymogen converted into 
its active mature form at low Ph.

[52]

PRSS1 Decreased

Protease, serine, 1 (trypsin 1) (PRSS1) gene encodes a trypsinogen, 
which is a member of the trypsin family of serine proteases. This enzyme 
is secreted by the pancreas and cleaved to its active form in the small 
intestine. This gene and several other trypsinogen genes are localized to 
the T cell receptor beta locus on chromosome 7.

[53]

(Continued )
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Gene Name Expression Functions References

TFF1 Decreased

Trefoil factor 1 (TFF1) gene is a members of the trefoil family. They 
are stable secretory proteins expressed in gastrointestinal mucosa. Their 
functions are not defined, but they may protect the mucosa from insults, 
stabilize the mucus layer, and affect healing of the epithelium. This gene, 
which is expressed in the gastric mucosa, has also been studied because 
of its expression in human tumors. This gene and two other related trefoil 
family member genes are found in a cluster on chromosome 21.

[54]

SPRR1B Decreased

Small proline-rich proteins (SPRRs) multi-gene family maps on 
chromosome 1. Their expression is high in epithelia of oral tissues such 
as tongue, esophagus and stomach, in contrast to external dry epithelia, 
such as skin. It has a role during squamous differentiation of skin and 
respiratory epithelial cells. Moreover, SPRR1 is expressed in squamous 
tumors of the lung. However, its role in non-squamous cells is largely 
unknown; it seems that it also occurs in non-squamous tissues and cell 
lines. This protein family is an important component of the cornified cell 
envelope, a structure formed beneath the plasma membrane of squamous 
differentiated cells by extensive cross-linking of several proteins.

[55], [56], [57]

Independent validation set by Q-PCR

To further explore the impact of increased or 
decreased genes on disease free survival (DFS) we selected 
FABP3 (increased gene) and SCGB1A1 (decreased gene) 
as having the two highest GeneMania discriminat network 
scores (Supplementary Table S3) [13]. They were evaluated 
by Q-PCR analysis on an independent study set of 79 ADs 
stage I samples. Of these patients, 63 were in NR with a 
median DFS of 31.7 months (range 12.1-71.4), while the 
remaining 16 were in ER with a median DFS of 7.4 months 
(range 0.9-11.8). Median age was 67 years (range 38-81) 
for NR patients and 68 years (55.0-75.5) for ER patients; 
most of them were male (66.7% NR, 62.5% ER) and 
smokers (69.8% NR, 93.8% ER) (Table 3 panel A). The 
box plots of mRNA expressions of FABP3 and SCGB1A1 
in NR and ER groups are shown in Figure 4A and 4B, 
respectively. High FABP3 expressions were associated with 
ER patients (p=0.017) with respect to those in NR, while 
low SCGB1A1 expressions were showen in ER patients 
as compared to those in NR with border line significance 
(p=0.111). At univariate analysis, high FABP3 expression 
and low SCGB1A1 expression were independent predictors 
of shorter DFS (P=0.034, HR=3.39, CI 95% 1.09-10.52, 
p=0.037, HR=0.29 CI 95% 0.09-0.92, respectively), 
as reported in Table 3 panel B and Figure 4C and 4D, 
respectively.

DISCUSSION

The identification of new genes involved in the risk 
of early relapse of radically resected lung AD patients 
could assist in their clinical management. Current evidence 
supports adjuvant cisplatin-based chemotherapy (four 
cycles) as standard of care in stages II and III radically 

resected NSCLC, while most stage IA and IB patients 
receive only surgical resection. As a significant proportion 
of stage I patients will relapse within 3 years, identification 
of early-stage patients with a poor prognosis could assist 
in selecting the appropriate candidates for adjuvant 
therapy. Several genomic and proteomic approaches have 
been made to identify signatures that can more accurately 
stratify NSCLC patients [15].

To our knowledge this is the first study that combines 
high throughput gene expression and computational 
analysis to identify stage I radically resected patients with 
an increased risk of relapse. This study proposes a new 
overall methodology to identify genes that are relevant 
in the prediction of disease relapse starting from an RNA 
sample pool of patients with homogenous stage (only 
stage I) and histopathological type (ADs). Previous gene 
profiling studies [16–18] used non-homogenous patient 
stages and histotypes and a large number of genes were 
selected to predict outcomes that are not easily applicable 
in the clinical setting. The methodology of our study by 
computational and bioinformatic analysis allowed us to 
select a few genes that discriminated for risk of relapse 
and can be used in clinical practice.

Microarray technology is commonly used in basic 
medical and biological research but has not yet been used 
for routine analysis in clinical practice. Today, various 
microarray platforms are used for generating RNA 
expression profiling and there is no gold standard, which 
probably are two possible explanations of conflicting 
results [16–19]. Real-time Q-PCR is considered the—
gold standard’ for gene expression analysis and is 
commonly used for validation of microarray results [20]. 
In our study, using Affymetrix microarray technology, 
we were able to identify a number of genes that were 
subsequently validated using real time Q-PCR, both in 
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Table 3: Independent patient sample: patient characteristics (Panel A) and disease free survival with Cox model for 
the selected genes (Panel B)

Panel A

Characteristics Patients NR (n. 63) Patients ER (n.16)

Median age, years 67.0 (38-81) 68.0 (55.0-75.5)

Median DFS, months (range) 31.7 (12.1-71.4) 7.4 (0.9-11.8)

Median follow-up, months (range) 37.2 (12.1-71.4) 9.4 (0.9-44.6)

Gender: Male/Female (%) 42/21 (66.7/33.3) 10/6 (62.5/37.5)

Ever smokers: Yes/No (%) 44/19 (69.8/30.2) 15/1 (93.8/6.2)

Stage: IA/1B (%) 42/21 (66.7/33.3) 8/8 (50.0/50.0)

Panel B

Variables HR 95% CI p

Gender (M/F) 1.16 0.42 3.19 0.775

Age 1.00 0.94 1.06 0.869

Stage (IA/IB) 1.87 0.70 4.99 0.209

FABP3 (High/low) 3.39 1.09 10.52 0.034

SCGB1A1(High/low) 0.29 0.09 0.92 0.037

Figure 4: Box plots and Kaplan-Meier estimates for disease-free survival (DFS) for an independent patient population. 
A. Box plot for the logarithm of FABP3 gene expression for NR and ER patients. B. Box plot for the logarithm of SCGB1A1 gene expression 
for NR and ER patients. C. Kaplan-Meier estimates for disease-free survival (DFS) according to low and high FABP3 expression with 
respect to the mean of this gene expression in the study population. D. Kaplan-Meier estimates for disease-free survival (DFS) according 
to low and high SCGB1A1 expression with respect to the mean of this gene expression in the study population.
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the pools and in individual RNA samples of selected 
patients in ER and NR disease. Validation of expression 
levels of increased and decreased genes by Q-PCR in 
the pools showed a concordance of 94.7% with respect 
to expression levels of microarray data (p<0.001). Due 
to the variability of gene expression among the RNA 
samples, as observed in another study [21], the validation 
of expression levels of increased and decreased genes 
by Q-PCR in the individual patients showed a lower 
concordance (73.6% for increased and 80.6% for 
decreased genes) with respect to the values of microarray 
expression levels (p<0.001).

Using computational analysis we were able to 
identify 4 increased and 6 decreased genes as the central 
nodes that best predict the function of the five modules 
obtained with ModuLand. The increased genes HOXA10, 
CLCA2, AKR1B10 and FABP3 were all present in the 
validated genes, while for the decreased genes only 
SCGB1A1 and PGC were in the validated gene list. 
CHIA and S100P were proposed by the GeneMania 
recommender systems and related to the centrality score 
to TFF1, PSCA, SPRR1B and PRSS1 that were in the 
selected list. Our ER patients presented a specific high 
expression of HOXA10, CLCA2, AKR1B10 and FABP3 
(increased genes) and a low expression of SCGB1A1, 
PGC, TFF1, PSCA, SPRR1B and PRSS1 (decreased 
genes) with respect to NR patients.

As FABP3 and SCGB1A1 genes had the highest 
discriminant network score in the computational 
analysis, we used an independent population of stage 
I Ads to assess their prognostic significance on DFS. 
We demonstrated that high FABP3 expression and low 
SCGB1A1 expression was associated with a worse 
DFS. In NSCLC the prognostic role of FABP3 is not 
known, while in gastric cancer, high expression of heart-
type FABP protein is associated with increased tumor 
aggressiveness, metastasis and poor prognosis [22]. 
Interestingly, in NSCLC cell lines, increased expression 
of heart-FABP appears to have a role in predicting 
response to gefitinib [23]. Davidson’s study, using a 
methodology similar to that of our study, identified 
sets of genes that were differentially expressed in 
leiomyosarcoma (LMS) than in endometrial stromal 
sarcoma. Among these genes, FABP3 was predominantly 
overexpressed in LMS [24].

SCGB1A1 can be used as a marker of precancerous 
progression in the bronchial epithelium since it is 
involved in the process of damage repair and xenobiotic 
metabolism; when decreased it is often associated with 
neoplastic transformation. As in our study, lower levels of 
this protein were associated with a worse clinical outcome 
in a population at high risk for lung cancer. The expression 
of SCGB1A1 also appears to be inversely correlated to 
regression of bronchial dysplasia and improvement in 
sputum cytometry assessment in smokers with high lung 
cancer risk. [25]

HOXA10 has been reported to be increased in 
human lung cancer cell lines and lung tumor tissues with 
respect to normal lung [26].

CLCA2 has a significant effect on cell invasion 
and the metastatic process and its expression is increased 
as a result of cell damage. It regulates the apoptotic 
pathway, senescence and carcinogenicity trough p53 
[27]. Moreover, the CLCA2 gene has been shown to act 
as a tumor suppressor in breast and colon cancer, where 
it is often decreased. On the contrary, overexpression of 
CLCA2 has been reported to be specifically associated 
with NSCLC.

AKR1B10 has been proposed as a promising 
new diagnostic marker in NSCLC of smokers since it is 
often overexpressed in moderate or poorly differentiated 
NSCLC (in 84% of squamous cell carcinomas and in 29% 
of adenocarcinomas), mostly in males and smokers [28].

Among decreased genes, PSCA has a role in 
signal transduction and in cell growth regulation. In a 
gastric cancer cell line it has been shown to have cell 
growth inhibitory activity [29] while in gallbladder 
adenocarcinoma it seems to be overexpressed and to 
correlate with decreased survival [30]. The expression 
status of PSCA in cancer cells appears to depend on the 
epithelium of their origin [31]. In NSCLC its expression 
is negatively correlated with prognosis [32].

The PGC gene has a general role in suppressing 
tumor development and several studies reported that low 
expression of PGC protein was closely related to poor 
differentiation and unfavorable survival in patients with 
breast, prostate, gastric and ovarian cancers [33–35].

PRSS1 gene expression seems to induce apoptosis 
and to promote spontaneous pancreatitis [36] and its role 
is not known in NSCLC.

TFFs is overexpressed in prostate, breast and lung 
AD and seems to be an indicator of worse prognosis. 
In lung adenocarcinoma, TFF1 gene expression is 
significantly associated with larger tumor size and acinar 
subtype [37]. Foekens et al. showed that decreased 
TFF1 in early breast cancer is an important variable for 
the identification of patients at high risk for recurrence 
and death [38]. In gastric tumors a decrease of TFF1 
significantly reduced the apoptosis of the cell lines and 
facilitated their proliferation [39].

The SPRR1B gene has a role in the transition of cells 
to G0 and may disrupt the normal progression to mitosis 
resulting in changes in ploidy. SPRR1B is a potential 
biomarker for bronchial malignant transformation 
since its expression is markedly reduced during tumor 
progression and its loss induces an irreversible malignant 
transformation [40].

In conclusion, our results indicate that it is possible to 
define, through gene expression and computational analysis, 
a characteristic gene profiling of ER patients with an 
increased risk of disease relapse. We also validated FABP3 
and SCGB1A1 genes as independent prognostic factors of 
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worse DFS. This may pave the way to more effective patient 
selection for adjuvant studies and possibly yield novel 
therapeutic targets with potential for drug development.

MATERIALS AND METHODS

Overall workflow method

We introduced a workflow diagram to synthetize 
the overall methodology applied in this paper (Figure 5). 
The goal of the study was to select a subgroup of genes 
relevant for risk of early relapse in NSCLC patients. 
From a database of consecutive resected NSCLC patients 
we identified stage I adenocarcinomas. The samples of 
patients in ER, NR and normal lung (NL) tissue were then 
identified. Three RNA pools were created, one for each 
group (ER, NR, NL) that were the input of the Microarray 
Affymetrix technology. The 47000 probes output for 
ER, NR, e NL were analysed using bioinformatic tools: 
detection validation analysis (ER vs NL and NR vs NL), 
ranking analysis (ER vs NR) and log distribution fold 
changes quartiles analysis (ER vs NR). These analyses 
were used to select 19 increased and 31 decreased genes. A 
real time quantitative-PCR (Q-PCR) validation step for the 
selected genes was performed using single patient samples 
and three RNA pools. We selected the 14 increased and 
25 decreased genes that showed a concordance between 
microarray and Q-PCR expression levels in patients and 
pools. These genes were used as input for computational 
analysis based on GeneMania and ModLand tools of 

Cytoscape. We obtained 4 increased and 6 decreased genes 
that could be used as a genetic signature to predict early 
relapse. Furthermore, an independent set of 79 DCs stage 
I samples was used to validate selected genes by Q-PCR.

Patient selection

As illustrated in Figure 5, using a prospective tissue 
banking of 110 consecutive resected NSCLC patients at 
S. Maria della Misericordia Hospital in Perugia-Italy, we 
selected frozen specimens of patients with stage I lung 
adenocarcinoma [2], [41].

Patients and their corresponding tissues were divided 
as follow: 1) no relapse (NR) based on the estimated risk of 
recurrence of these patients [42]; 2) early relapse (ER) disease 
relapse within a year from surgery; 3) normal lung (NL) tissue 
taken from distant or contralateral lung from both groups 
(1 and 2) of patients. From these three groups of patients, three 
RNA pools were created: pool ER, pool NR, pool NL.

Tissues were stored in a freezer at -80°C in a 
solution containing RNAlater (Qiagen S.p.A., Milan, 
Italy). Samples had to contain at least 50% tumor cells to 
be eligible for microarray analysis as determined by one 
reference pathologist (B.G.) on adjacent separate sections.

The study was approved by the local Ethics 
Committee and was conducted in accordance with 
ethical principles of the latest version of the Declaration 
of Helsinki. Written informed consent for gene 
expression analyses was obtained from each patient 
entering the study.

Figure 5: Study flowchart.
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RNA extraction, microarray and Q-PCR

Total RNA was extracted from frozen tissues after 
thawing and homogenizing by IKA Ultra-Turrax and 
QIAzol Lysis Reagent. RNA was extracted with the 
phenol chloroform method. From the aqueous phase, 
RNA was automatically purified by BioRobot EZ1using 
EZ1 RNA Universal Tissue kit instrument according to the 
manufacturer’s instructions (Qiagen S.p.A., Milan, Italy). 
RNA was eluted in 50 μl of RNase-free water and stored 
at -80°C until use. The quality, integrity and quantity of 
the total RNA was evaluated on Experion™ Bioanalyzer 
(Biorad Technologies, Italy).

To create the three pools, a concentration of 1 γ for each 
sample belonging to each pool was used. The concentration 
of the three pools was assessed and the volume of each pool 
was calculated to obtain the required concentration (5 γ) for 
the Microarray. We compared gene expression profiling from 
pool-NL and cancer specimens from pool-NR and pool-ER, 
using Affimetrix human microarray HG-U133Plus 2.0 that 
evaluates the expression levels of more than 47,000 human 
transcripts and variants, including 38,500 well-characterized 
genes in a single experiment. We used reverse transcription 
PCR (RT-PCR) to create from RNA complementary DNA 
(cDNA) using random primer technologies. Expression of 
cDNA for increased and decreased genes was measured 
in the three pools (NR, ER, NL) and in each of the lung 
tissues of corresponding patients by real-time Q-PCR using 
SybrGreen Gene Expression Assays on Stratagene Mx3000P 
QPCR System. Premier Biosoft Beacon Designer was used 
to design the primers. The housekeeping gene was the HPRT 
(Hypoxantin PhosphoRibosyl Transferase); the calibrator 
was the RNA pool of normal lung tissue. All runs included 
a calibrator sample and a one no-template control, and all 
samples were measured in triplicate. Relative quantification 
was carried out using the 2-ΔΔCt method using HPRT as 
reference gene [43]. Increased and decreased genes were 
presented using radar plot for the logarithm of the rate of ER 
versus NR. The microarray data, pool and patient Q-PCR 
mean of the gene expressions were compared with the 0 of 
the logarithm of the ER and NR ratio. The correlation and 
the concordance were tested with Kendall’s correlations with 
a poisson regression.

Bioinformatics analysis

Filtering criteria were applied to select significant 
genes. A one-sided Wilcoxon’s Signed Rank test was the 
statistical method used to calculate the detection p-value 
(<0.01) that reflects the significance of the differences 
between perfect match intensity and mismatch intensity for 
each probe pair of the microarray. Next, a ranking analysis 
of microarray data based on F-statistic [44] (P < 0.01) 
was used to identify statistically significant genes from 
ER versus NR experiments. Agilent SIGNET and Matlab 
software were used to perform bio-informatic analysis.

The increased and decreased genes to be analyzed in 
the validate setting were chosen considering the logarithm 
of the ratio between ER and NR and applying the lower 
and the upper quantiles (0.10 and 0.90) of the distribution.

Real time Q-PCR in the independent validation set

An independent validation set of 79 ADs patients 
collected at the S. Maria della Misericordia Hospital 
(Perugia, Italy) from 2008 to 2014 was used to further 
investigate, using Q-PCR, the impact of increased or 
decreased genes on disease- free survival (DFS). We 
evaluated FABP3 (increased gene) and SCGB1A1 
(decreased gene) representing the network central nodes. 
Quantification of mRNA expression levels of two genes, 
were performed by real-time one-step RT-PCR using 
QuantiFast assay (Qiagen, Milan, Italy).

The results were compared considering β-actin 
(internal reference gene) and the pool of normal tissues 
(calibrator) using the 2−ΔΔCt method. DFS and the 95% 
confidence intervals (CIs) were evaluated by the Kaplan–
Meier method comparing the different groups by log-
rank test. The Cox proportional hazards model was used 
to evaluate the prognostic role of each single parameter 
studied on DFS, in univariate analyses.

Gene network computational analysis

Gene network analysis was performed to evaluate 
the network representation of the molecular relationships 
between increased and decreased selected genes in ER 
vs NR. GeneMANIA, a Cytoscape plug-in, was used to 
predict increased and decreased gene interactions and to 
expand the networks with functionally similar genes, using 
available genomics and proteomics data [10]. Networks 
were generated using information derived from the co-
expression, pathways and predicted categories.

Key network nodes were identified through the 
analysis of network properties including connectedness 
and centrality. We used the ModuLand algorithm, 
implemented as plug-in of Cytoscape, to analyze the 
properties of the activated or increased and inhibited 
or decreased networks that were obtained using 
GeneMANIA. The ModuLand algorithm produced 
clusters (or modules) represented by key network nodes 
[12]. The function of these central nodes best predicts the 
function of the module it represents. The central nodes 
are also likely to represent the key functional elements of 
the overall network and therefore can be used to prioritise 
future work [45], [46].
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