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INTRODUCTION

Colorectal cancer (CRC) is the third most common 
cancer and the fourth leading cause of cancer related death 
worldwide, which has been a great threat to public health. 
To date, researches focused on the deregulation of protein-
coding genes to identify oncogenes and tumor suppressors 
that serve as diagnostic and therapeutic targets [1] and/
or genetic variations that serve as susceptibility loci [2] 
largely extended our knowledge to CRC pathogenesis. 
Additionally, studies on transcriptional regulatory 
networks [3] and epigenetics such as microRNAs [4, 5], 
DNA methylation [6] and enhancer elements [7] in CRC 
have emerged.

Recent advances in next generation sequencing 
(NGS) technologies allowed to comprehensively study 
the human transcriptome, thereby identified a new 
class of RNA called long non-coding RNA (lncRNA). 
lncRNA is longer than 200 nt and has little or no open 
reading frame (ORF). lncRNAs can be divided into five 
broad categories: sense, antisense, bidirectional, intronic 

and intergenic, according to the proximity between 
neighboring transcripts [8]. Accumulating evidence 
suggested that thousands of lncRNAs existed and 
exhibited highly tissue and cell-type specific manner [9].  
Despite do not encode protein, lncRNAs have been 
proved to be involved in diverse physiological and 
pathological processes, such as cell growth, apoptosis, 
stem cell pluripotency, development and cancer biology 
by acting as transcriptional, posttranscriptional, or 
epigenetic regulators [10, 11]. LncRNA landscape has 
been depicted in several types of cancer by RNA-seq, such 
as lung cancer [12], prostate cancer [13], neuroblastoma 
[14], T-ALL [15], breast cancer [16] and endometrial 
cancer [17]. A panel of tumor-type specific differentially 
expressed lncRNAs are identified and some of which have 
been functionally verified to contribute to tumorgenesis or 
serve as putative diagnostic markers.

Initial studies in CRC have identified nearly 20 
individual aberrantly expressed lncRNAs, many of 
which function as oncogenes or tumor suppressors by 
participating in critical signaling pathways such as MYC, 
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ABSTRACT
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thousands of aberrantly expressed lncRNAs were characterized. Co-expression 
analysis revealed that some lncRNAs correlated to their neighboring mRNAs in 
expression levels, whereas others formed networks with protein-coding genes  
in trans. We observed H3K4me3 was enriched at expressed lncRNA transcription 
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lncRNAs were required for proliferation and migration of CRC cells. In summary, we 
provided a new framework for lncRNA associated clinical prognosis evaluation and 
target selection of gene therapy in CRC.
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WNT, and TP53 [18]. Of these lncRNAs, for example, 
the upregulated E2F4 antisense in CRC was induced by 
WNT/beta-catenin signaling, which resulted in E2F4 
downregualtion [19]; LOC285194/TUSC7 was found 
with lower expression in tumor and functioned as TP53-
regulated tumor suppressor that inhibited cell growth 
through the repression of miR-211 [20, 21]. Recently, a 
genome-wide study of CRC lncRNAs based on microarray 
has obtained 762 aberrantly expressed lncRNAs [22]. 
However, the lack of large scale of functional annotation 
made the roles of the vast majority of those lncRNAs 
remain unclear. In addition, lncRNA expression pattern 
linked to liver metastasis, which is the most frequent 
site of metastases from CRC [23], has not yet been 
investigated.

To investigate the potential role of lncRNA 
in carcinogenesis and liver metastasis in a more 
comprehensive way, we systematically analyzed public 
RNA-seq data from patients with matched primary 
tumor, synchronous liver metastases and normal 
colon tissues. We identified thousands of differently 
expressed lncRNAs as well as mRNAs associated with 
primary and metastasis tumor. Functional predictions 
with advanced computational approaches revealed 
that some cis-lncRNAs were co-regulated with their 
neighboring mRNAs and implicated in several critical 
CRC signaling pathways, whereas other lncRNAs acted 
in trans by forming networks with protein-coding genes 
contributed to tumor development and progression. 
Additionally, we demonstrated the epigenetic control of 
lncRNA transcriptions by observing the enrichment of 
histone marks at the lncRNA TSSs loci. Furthermore, 
we identified primary cancer related 33-lncRNA and 
metastasis cancer related 46-lncRNA signatures positively 
correlated with a previously defined poor-prognosis gene 
set. Finally, functional experiments demonstrated that 
inhibition of two candidate lncRNAs, LOC100190940 
and TCONS_l2_00022545, significantly decreased the 
proliferation and migration of CRC cells. In summary, we 
have systematically characterized lncRNAs in CRC and 
provided evidence to support lncRNAs as key regulators 
in carcinogenesis and metastasis. All these results revealed 
these lncRNAs could serve as potential diagnostic 
biomarkers or therapeutic targets in patients with CRC.

RESULTS

lncRNA landscape in primary and metastasis 
CRC

To comprehensively analyze the lncRNA map 
in CRC, we first set out to characterize the global 
transcriptional alterations between CRC samples. We 
compared the transcriptomic patterns using RNA-seq 
data [24] derived from 54 samples containing 18 matched 
primary (PC), metastasis (MC) and non-tumor (NC) 

tissue. We generated the custom reference gene annotation 
file from UCSC, in which 18,870 protein-coding genes 
and 10,044 lncRNAs were included (see Supplementary 
Material). In total, we found 1,272 lncRNAs with RPKM 
> 1 out of the 2,954 expressed lncRNAs (RPKM ≥ 0.3, a 
detectable expression cutoff for lncRNAs [25]) in at least 
one sample, suggesting that these lncRNAs were actively 
expressed in cancerous and/or normal colonic tissue and 
might be involved in normal colon function. Additionally, 
lncRNAs displayed lower expression level relative to 
protein-coding genes both in cancerous and normal colon 
(P < 2.2e-16) (Figure 1A), consistent with previous reports 
that lncRNA was less actively transcribed than mRNA  
[9, 15].

To further investigate the gene expression changes 
between distinct cancer status, we performed differentially 
expression analysis upon the three expression profiles. 
Overall, 2,019 protein-coding genes and 395 lncRNAs 
were detected as differentially expressed (DE) between 
primary tumor and normal samples (FDR < 0.05 and 
fold change ≥ 2). Meanwhile, 1,655 DE protein-coding 
genes and 290 DE lncRNAs were detected between 
primary and metastasis tumor samples, and 4,108 
DE protein-coding genes and 960 DE lncRNAs were 
detected between metastasis tumor and normal samples, 
respectively (Figure 1B and Supplementary Table S1). 
Both principal components analysis (PCA) (Figure 1C) 
and unsupervised hierarchical clustering of these DE 
protein-coding genes and lncRNAs revealed cancer stage-
specific expression patterns (Figure 1D–1E). Specially, 
we performed unsupervised hierarchical clustering on the 
DE lncRNAs exclusively to investigate their expression 
pattern. As expected, our DE lncRNA expression profile 
exhibited distinct patterns corresponding to normal, 
primary and metastasis cancer samples, respectively 
(Figure 1E). In agreement with previous observations that 
lncRNAs exhibited greater tissue specificity in expression 
than mRNAs [9], our results suggested that lncRNAs 
could also show disease stage specific expression patterns 
compared to protein-coding genes in CRC.

Functional characterization of the identified DE 
lncRNAs

To verify the fidelity of our differentially expressed 
transcripts, we first compared them with the TCGA study. 
Of the total of 1,675 DE protein-coding genes between 
tumor and normal samples in TCGA, 730 were overlapped 
with our PC-NC profile, and 451 were overlapped with 
PC-MC or MC-NC profiles. Next, GSEA analysis revealed 
that genes dysregulated either in PC or MC were enriched 
in colorectal cancer signatures and critical singling 
pathways (Figure 2A). Therefore, our gene expression 
profiles seem to be accurate and robust.

We next explored if DE lncRNAs have functional 
roles in tumorgenesis or metastasis. By determining the 
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signaling pathways of the protein-coding genes flanking 
DE lncRNA loci, we found the neighboring protein-
coding genes were enriched in several critical pathways  
(Figure 2B). These observations suggested that some of 
the DE lncRNAs might be members of those signaling 
pathways and promoted cancer development. Additionally, 
we scanned each DE lncRNA and examined if its nearest 
mRNA was also differentially expressed. After expression 
level filtering, we collected 31 DE lncRNA-mRNA pairs 
to interrogate if they were co-regulated (Figure 2C). As 
expected, we found 6 lncRNA-mRNA cis pairs in which 
both the DE lncRNA and mRNA were regulated in at 
least two types of samples (Figure 2D). We validated the 
expressions of eight DE lncRNAs and mRNAs in our 6 
matched CRC samples by qPCR experiment (Figure 2E), 
which were consistent with our RNA-seq results.

Network-based prediction of lncRNA functions

As some lncRNAs function in alternative ways other 
than cis-regulation, we performed weighted correlation 
network analysis in order to identify highly interconnected 
genes. We constructed co-expression transcripts network 
comprising both mRNAs and lncRNAs, yielding a total 
of 20 modules, which then were ultimately merged based 
on module similarity (Figure 3A). These modules were 

quantitatively correlated to three traits: normal, primary 
and metastasis cancer. We found the green module was 
most positively correlated with primary cancer with 
206 mRNAs and 27 lncRNAs (P = 0.001) (Figure 3B 
and Supplementary Table S2). In contrast, transcripts in 
the blue module were most positively correlated with 
metastasis cancer with 784 mRNAs and 239 lncRNAs 
(P = 5e-10) (Figure 3C and Supplementary Table S3). 
Thus, the subnetworks based on the transcripts from the 
modules corresponding to different traits were constructed, 
respectively. 

Pathway analysis for primary cancer correlated 
green module subnetwork (Figure 3D) revealed that 
members in this module were highly enriched in the 
activated pathways such as ECM-receptor, TGF-β 
and WNT (Figure 3E). It therefore can be inferred that 
lncRNAs in the same subnetwork might be functionally 
related to those pathways as well. Likewise, members in 
the metastasis cancer correlated blue module subnetwork 
(Figure 3F) were significantly enriched in several cancer 
related metabolic pathways (Figure 3G), suggesting 
these lncRNAs in this module have roles in remodeling 
abnormal cellular metabolism in cancer cells. 

Additionally, we found the turquoise module was 
correlated with normal samples. This module contained 
1,475 transcripts, including 1,108 mRNAs and 307 

Figure 1: Global transcriptomic patterns in CRC. (A) Boxplots of log10-transformed (RPKM) gene expression values for all 
transcribed lncRNA and mRNA in each group. P values were determined by Wilcoxon rank sum test with continuity correction. (B) Venn 
diagrams showing differentially expressed mRNAs and lncRNAs in CRC. (C) Principal components analyses of primary tumors (n = 18),  
metastasis tumors (n = 18) and normal colon tissues (n = 18). (D) Hierarchical clustering of all differentially expressed transcripts expression. 
(E) Hierarchical clustering of differentially expressed long non-coding gene expression.
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lncRNAs. Pathway analysis revealed members in this 
module were highly enriched in Cytokine-cytokine 
receptor interaction, Neuroactive ligand-receptor 
interaction, Hedgehog signaling pathway and Intestinal 
immune network for IgA production.

Epigenetic regulation of dysregulated lncRNAs 
in CRC

Previous work have shown that the enrichment of 
H3K4me3 at the TSS of lncRNA loci in embryonic stem 

cell, T-ALL, prostate cancer and lung cancer [12, 13, 
15, 26]. To test the presence of histone modifications at 
expressed lncRNA loci, we analyzed H3K4me3 ChIP-
seq data in CRC patient samples and identified 21,889 
peaks. We observed enrichment of H3K4me3 signal at 
those lncRNA TSSs (Figure 4A), indicating that lncRNAs 
possessed actively regulated promoters in CRC.

Further, we tested the correlations between 
histone modifications and transcriptions. We performed 
differential modification analysis and identified 3,721 
gained (up-H3K4me3) and 3,224 loss (down-H3K4me3) 

Figure 2: Functional interpretation of differentially expressed coding and long non-coding genes. (A) Gene set enrichment 
analysis delineates biological pathways for altered protein coding genes. (B) Enriched KEGG pathways of differentially expressed 
lncRNAs. (C) Heatmap of 42 pairs of DE lncRNAs and their nearest DE mRNAs. (D) Examples of expression of co-regulated lncRNA-
mRNA partners (black is lncRNA, red is mRNA). (E) qPCR validation of the RNA-seq data. Replicates (n = 6) of each sample were run 
and the Ct values averaged. All Ct values were normalized to β-Actin.
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regions in cancer (FDR < 0.05, fold-change > 4) compared 
with normal samples (Figure 4B). By overlapping these 
regions with 395 DE lncRNAs between primary tumor 
and normal samples, 45 differential region-lncRNA pairs 
were found (Figure 4C and Supplementary Table S4), 
all of which displayed consistent direction in that gained 
H3K4me3 regions correlated with up-regulated lncRNAs 
whereas loss H3K4me3 regions correlated with down-
regulated lncRNAs (r = 0.9227, P < 0.0001) (Figure 4D). 
As is shown in Figure 4E, LINC00659 is highly expressed 
in primary tumor with higher H3K4me3 signal at its 

promoter region compared with normal samples. Thus, 
these results indicate that epigenetic mechanism is critical 
for lncRNA transcription in CRC.

Identification of poor-prognosis associated 
lncRNAs in CRC

To evaluate the clinical significance of our 
discovered lncRNAs, we next set out to determine the 
expression relationships between lncRNAs and three 
recent CRC classification systems, named the Colon 

Figure 3: Network analysis of coding and long non-coding gene expression in CRC. (A) Relationships between network 
modules and traits. Upper panel, dendrograms produced by average linkage hierarchical clustering of genes on the basis of topological 
overlap. Modules of co-expressed genes were assigned colors as indicated by the horizontal bar beneath each dendrogram. Modules from 
different networks with significant overlap (corrected hypergeometric P < 0.05) were assigned the same color. Lower leaves indicate 
greater similarity of transcript expression profiles within that module. Lower panel (three correlation bands), NC, PC and MC bands show 
correlations (cor.) to the corresponding modules. Positive (red) and negative (blue). (B–C) Pie charts indicating the abundance of lncRNAs 
within green and blue modules. Module members are defined as all transcripts that were positively correlated with the module eigengene. 
(D) The co-expression network of green module. (E) KEGG pathway enrichment annotations of green module. (F) The co-expression 
network of blue module. (G) KEGG pathway enrichment annotations of blue module.
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Cancer Subtype (CCS) system, the Colorectal Cancer 
Assigner (CRCA) and the Colon Cancer Molecular 
Subtype (CCMS) system. In these classification systems, 
poor-prognosis molecular subtypes were defined as CCS3, 
CRCA5 and CCMS4, respectively [27–29]. We collected 
and merged the gene classifiers from the three subtypes 
and obtained a 381-gene signature that were correlated 
with decreased disease-free survival intervals after 
surgery. 

We first explored the expression patterns of the 381-
gene in our RNA-seq data. As a result, they successfully 
distinguished the primary, metastasis and normal samples 
(Figure 5A). We then clustered the primary cancer 
associated DE lncRNAs and protein-coding genes into 
sets with correlated expression patterns by constructing a 
matrix of the association of each lncRNA with each of the 
381 genes using the 54 samples (Figure 5B). This analysis 
revealed a set of 33-lncRNA positively correlated with 
poor-prognosis gene signatures (Supplementary Table S5).

Furthermore, in the classification systems, patients 
classified as CCS3 metastasized more frequently; 

CCMS4 tumors showed enrichment for metastatic than 
other subtypes, indicating that 381-gene signature had 
the possibility to detect patients who tend to develop 
colorectal liver metastasis at early stages, e.g., Dukes 
stage B. We observed that a fraction of the 381 genes 
were up-regulated in metastatic tumor (Figure 5A). 
Combined with our primary-metastatic profile, 122 genes 
were significantly expressed. Similarly, we clustered the 
290 metastatic cancer associated DE lncRNAs and those 
122-gene signature into sets with correlated expression 
patterns across the 54 samples (Figure 5C). This analysis 
generated a set of 46-lncRNA positively associated with 
poor-prognosis gene signatures (Supplementary Table S6).  
We then examined the prognostic value of those 
lncRNA signatures in a recently developed lncRNAs 
exploration platform called TANRIC [30]. Higher 
expression of primary tumor upregulated lncRNA from 
the 33-lncRNA signatures, ENSG00000227496.1(TCON
S_00001306+TCONS_00001307+TCONS_00001308+T
CONS_00002241), was significantly correlated with poor 
overall survival of the patients (Figure 5D). In contrast, 

Figure 4: H3K4me3 modifications at lncRNA loci in CRC. (A) Aggregate plots of H3K4me3 ChIP signal at TSSs ± 3 kb of 
lncRNAs in primary tumor. (B) Heatmap representation of differential ChIP signal for H3K4me3 centered on peak midpoint ± 3 kb  
in primary tumor and normal tissue. (C) Venn diagrams showing overlap between differential H3K4me3 sites linked lncRNAs and 
differentially expressed lncRNAs in CRC. (D) Correlations between differential H3K4me3 and target lncRNA expressions. (E) ChIP signal 
for H3K4me3 and RNA signal on tumor highly expressed lncRNA LINC00659 TSS loci.
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lower expression of metastatic tumor down-regulated 
lncRNA from the 46-lncRNA signatures, LOC100506178, 
was significantly correlated with poor overall survival of 
the patients (Figure 5E). Taken together, these results 
suggested that lncRNAs highly correlated with poor-
prognosis genes had predictive and prognostic value in 
the management of CRC.

Functional analysis of two dysregulated lncRNAs

We next tested the roles of dysregulated lncRNAs in 
CRC development. We selected two candidate lncRNAs 
to perform siRNA-mediated knockdown experiments,  
as LOC100190940 was upregulated in primary tumor 
and TCONS_l2_00022545 was upregulated in metastasis 
tumor. Moreover, both of the two lncRNAs were co-

expressed with their neighboring protein-coding genes. 
Results showed that knockdown of LOC100190940 
and TCONS_l2_00022545 (Figure 6A) significantly 
downregulated their neighboring protein-coding genes 
(Figure 6B). Additionally, knockdown of the two lncRNAs 
significantly decreased cell proliferation (Figure 6C) and 
migration (Figure 6D). 

DISCUSSION

In this study, we presented the first report on 
lncRNA expression landscape in patients with matched 
primary tumor and synchronous liver metastases. As 
expected, our bioinformatic approach validated several 
aberrantly expressed lncRNAs such as H19, CRNDE 
and CCAT1 in the previous study [18]. In addition, we 

Figure 5: Identification of poor-prognosis gene signatures associated lncRNAs. (A) Heatmap of 381 poor-prognosis genes 
expression pattern in RNA-seq data set. (B) A hierarchically clustered heatmap of the correlation between 381 poor-prognosis genes and 
395 primary cancer associated DE lncRNAs. (C) A hierarchically clustered heatmap of the correlation between 122 poor-prognosis genes 
and 290 metastasis cancer associated DE lncRNAs. Red color indicates positive correlation, blue color indicates negative correlation 
and white represents no correlation. (D) Kaplan-Meier curves for overall survival time in patients with CRC according to expression of 
ENSG00000227496.1. (E) Kaplan-Meier curves for overall survival time in patients with CRC according to expression of LOC100506178.
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identified hundreds of novel dysregulated lncRNAs. 
Thus, our results provided a valuable resource for further 
lncRNA studies in CRC.

Genomic loci analysis revealed that some lncRNAs 
showed co-regulated expression patterns with their 
neighboring protein-coding genes, suggesting they 
displayed enhancer-like functions. For example, two 
lncRNAs, TCONS_00020998 and LOC100190940, 
displayed co-expression manner with their proximal 
protein-coding genes, named FZD10, which is a member 
of WNT signaling. Further analysis discovered that some 
other lncRNAs formed networks with protein-coding 
genes. Interestingly, we found transcripts in metastasis 
cancer related module were enriched for several metabolic 
pathways. It has been well accepted that abnormal cellular 
metabolism is a hallmark of cancer [31, 32]. In metastatic 
cancer, however, such phenomenon has not been fully 
investigated. It is speculated that mutations in metabolic 
pathways provided cancer cells with opportunities 
to evolve under the selective pressure of invaded 
microenvironments, which probably play a prominent role 
in favoring the emergence of metastatic traits [33]. Our 
findings thus provided new evidence for cancer metastases 
initiation and progression.

We also identified primary and metastasis cancer 
linked lncRNA signatures positively correlated with poor-
prognosis gene set. To examine these lncRNA signatures 
in TCGA data through TANRIC, we mapped our 
lncRNAs to GENCODE V19 annotations. For the mapped 
lncRNAs, we proved that some lncRNAs were correlated 
with poor overall survival outcomes. Thus, our lncRNA 

signatures might provide new prognostic prediction and 
subtype classification markers. Furthermore, two studies 
have recently discovered that those poor-prognosis 
genes are prominently expressed by stromal cells rather 
than epithelial colon tumor cells [34, 35]. Accordingly, 
we suggested that primary cancer related 33-lncRNA 
might also expressed by stromal cells as their highly co-
expression pattern with those poor-prognosis genes as 
well as the highly cell-type specific expression patterns 
for lncRNAs.

In addition to changes in expression levels, 
lncRNAs could be affected by driver mutations or 
somatically inheritable alterations. For example, a high-
risk neuroblastoma-associated SNP located within the 
lncRNA-NBAT1 and is associated with its differential 
expression [14]. We mapped 83 GWAS CRC-associated 
SNPs to all of our lncRNA loci. Using 10 kb as the 
cutoff distance between a lncRNA and a SNP, we 
found that 9 (10.8%) of the index SNPs were near loci 
harboring lncRNAs. Notably, 5 of these lncRNAs showed 
differentially expressed levels. Functional connections 
between the SNPs and lncRNAs could be explained by 
further experiments directly, such as introducing such 
mutations into organoids derived from normal human 
intestinal epithelium [36, 37].

In conclusion, our study represented a 
comprehensive analysis of lncRNAs in CRC. By applying 
an integrative approach for the analysis of lncRNAs, 
we identified several dysregulated pathways activated 
by lncRNA in primary and metastasis cancer. Our study 
extended the knowledge of lncRNAs implicated in 

Figure 6: Functional analysis of candidate dysregulated lncRNAs. (A) Relative expression of LOC100190940 and TCONS_
l2_00022545 measured by qPCR in HCT-116 cells transfected with siRNA. (B) Relative expression of FZD10 and CD14 measured 
by qPCR after in HCT-116 cells transfected with siRNA. (C) Growth curves illustrated the relative cell proliferation in HCT-116 cells 
transfected with LOC100190940 and TCONS_l2_00022545 siRNAs. (D) Wound healing scratch assay in HCT-116 cells transfected with 
LOC100190940 and TCONS_l2_00022545 siRNAs.
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CRC and provided a new framework for future research 
upon lncRNA associated clinical prognosis evaluation. 
Altogether, our results revealed these lncRNAs could 
serve as potential diagnostic biomarkers or therapeutic 
targets in patients with CRC.

MATERIALS AND METHODS

RNA-seq data analysis

RNA-seq data were downloaded from NCBI 
GEO database under accession number GSE50760. 
A total of 54 pair-end SRA files were converted to raw 
FASTQ files then aligned to human reference genome 
hg19 using TopHat [38] with default parameters. We 
provided a custom reference gene annotation file by 
compiling the UCSC mRNA and lncRNA annotation files 
(Supplementary Material and Supplementary Table S7).  
The alignment BAM files were sorted and indexed, and 
converted into SAM files with SAMtools [39]. Then 
the SAM files were subjected to read counting using 
the python package HTSeq [40]. We chose the “union” 
mode of HTSeq to mask the overlapping regions between 
mRNA and lncRNA. R package edgeR [41] and DESeq2 
[42] were used for all differential expression (DE) analysis 
from the raw counts and the results from the two packages 
were overlapped for further analysis. In all DE tests, a 
gene was considered significant if the FDR < 0.05 and fold 
change ≥ 2. The read counts were converted into RPKM 
(Reads Per Kilobase of exon model per Million mapped 
reads). The RPKM of each DE genes and lncRNAs were 
clustered and visualized as heatmaps in MultiExperiment 
Viewer (MeV version4.9.0).

Gene co-expression network

We constructed the weighted gene co-expression 
networks for our expression profiles by using the WGCNA 
R package [43]. In total, 5,703 most variable transcripts 
containing both lncRNAs and mRNAs were selected for 
network construction. All modules that were clusters of 
genes that behaved similarly were assigned to a color. The 
module eigengene was used to represent each module, 
which was calculated by the first principal component, 
thereby capturing the maximal amount of variation of 
the module. Each module eigengene was related to traits 
(NC, PC or MC) by calculating the Pearson’s correlations 
between the module eigengene and traits. The network 
was visualized by Gephi.

Functional annotation

Gene Set Enrichment Analysis (GSEA) were 
performed to determine significant enrichment of genes 
found in a previously defined gene expression signatures 
using GSEA software [44]. The enrichment of KEGG 
pathways for lncRNAs were determined by analyzing 

its nearest neighboring mRNAs using DAVID [45] and 
PANTHER [46]. Functional annotations of significant 
modules were performed by DAVID.

ChIP-seq data analysis

ChIP-seq data of H3K4me3 and input of primary 
CRC and matched normal colon tissue were downloaded 
from GSE36204. All data were aligned to hg19 reference 
genome using bowtie [47] with the following options: -n 2,  
-m 1. Enriched regions were called by MACS [48]. 
Differentially enriched H3K4me3 sites were determined 
by diffReps [49] with FDR < 0.05 and fold change > 4. 
Examples of ChIP-seq and RNA-seq data were visualized 
using the IGV browser [50].

Correlation matrix clustering 

Lists of CRCA, CCS and CCMS poor-prognosis 
signature genes were obtained from the supplementary 
tables in the respective publications. We generated a 
gene correlation matrix between DE lncRNAs and poor-
prognosis gene sets by computing the Pearson correlation 
coefficient between each lncRNA and each gene. A 
matrix was constructed whose entries were the correlation 
coefficients. This matrix was clustered and visualized in 
MultiExperiment Viewer using a Euclidian distance metric 
and complete linkage clustering.

Patients and tissue samples

To validate the results for RNA-seq data, we 
recruited 6 pairs of colorectal cancer tissue and 
corresponding non-tumor tissue samples, all of which were 
obtained from patients who underwent surgical operation 
in NO.161 hospital in 2014. All the participants were 
histologically confirmed to be colorectal adenocarcinoma 
and did not receive any other therapy on the time of 
enrollment. The informed consent was obtained from all 
the participants and procedures used in this study were 
approved by the institutional review boards of NO.161 
hospital.

RNA extraction and qRT-PCR

All samples were immediately frozen with liquid 
nitrogen after surgical resection. Total RNA was isolated 
using Trizol Reagent (Invitrogen) according to the 
manufacturer’s instructions. After RNA extraction, the 
reverse transcription was synthesized using RevertAidTM 
First Strand cDNA Synthesis Kit from Fermentas 
according to the manufacturer’s instructions using random 
primer. The PCR primers were designed with Primer 
Premier 5.0 software and 𝛽-Actin was used as a reference 
gene. qPCR was performed on iQ5 RealTime PCR 
Detection System (Bio-Rad, USA) using SYBR Green 
Realtime PCR Master Mix (TOYOBO CO., LTD,Japan) 
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as the readout. All reactions were carried out in triplicates. 
Data was analyzed by the 2−ΔΔCT method. All the primers 
are available on request.

RNA interference 

The siRNA oligonucleotides were synthesized by 
GenePharma, Inc. The target sequences were as follows:

si-LOC100190940-1: 5′- CACAGUGCCAGUAAC 
UUCA-3′;

si-LOC100190940-2: 5′-GGGUAGUGCUUACCU 
CUAU-3′;

si-LOC100190940-3: 5′- GCACACAGUUUAGAA 
CUUA-3′;

si-TCONS_l2_00022545-1: 5′-CCUAGAAACAGG 
AUGUCCU -3′;

si-TCONS_l2_00022545-2: 5′-CAGCUCAACAUG 
AAUCCUA-3′;

si-TCONS_l2_00022545-3: 5′-GAAGACAAUUU 
CUGAUAGA-3′.

HCT116 cells were transfected with 50 nM siRNA 
oligonucleotides in 6-well plates. The knockdown 
efficiency was measured by quantitative RT-PCR at 48–72 h  
after transfection.

Cell viability assays

Cell viability was assessed by the Cell Counting Kit 
8 (CCK-8). Briefly, siRNA and control treated HCT116 
cells were seeded into 96-well plates at an initial density 
of 5000 cells/well. At each time points, 10 µl of CCK-8 
solution was added to each well and incubated for 2 h. The 
absorbance was measured by scanning with a microplate 
reader at 450 nm. Data were expressed as the as follows: 
relative viability = A450 (treated) − A450 (blank) or A450 
(control) − A450 (blank).

Wound healing scratch assay

For the wound healing scratch assay, siRNA and 
control treated HCT116 cells were seeded in 6-well plates. 
After 24 h, wound was made by scratching a line across 
the bottom of the dish on the monolayer of the confluent 
cells with a sterile p-200 pipette tip. The cells were rinsed 
with PBS and then cultivated in the corresponding serum-
deprived medium supplemented with 0.5% FBS. The 
same area of the gap was imaged at 50 × magnifications 
by using a microscope equipped with a digital camera 
(Olympus) at 0, 24 and 48 h after scratching.
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