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ABSTRACT
The aim of the bone metastases (BM) treatment is to prevent the occurrence 

of skeletal-related events (SREs). In clinical, physicians could only predict the 
occurrence of SREs by subjective experience. Machine learning (ML) could be used 
as predictive models in the medical field. But there is no published research using ML 
to predict SREs in cancer patients with BM. The purpose of this study was to assess 
the associations of clinical variables with the occurrence of SREs and to subsequently 
develop prediction models to help identify SREs risk groups.

We analyzed 1143 cancer patients with BM. We used the statistical package 
of SPSS and SPSS Modeler for data analysis and the development of the prediction 
model. We compared the performance of logistic regression (LR), decision tree (DT) 
and support vector machine(SVM). The results suggested that Visual Analog Scale 
(VAS) scale was a key factor to SREs in LR, DT and SVM model. Modifiable factors 
such as Frankel classification, Mirels score, Ca, aminoterminal propeptide of type I 
collagen (PINP) and bone-specific alkaline phosphatase (BALP) were identified. We 
found that the result of applying LR, DT and SVM classification accuracy was 79.2%, 
85.8% and 88.2%, with 9, 4 and 8 variables, respectively. 

In conclusion, DT and SVM achieved higher accuracies with smaller number of 
variables than the number of variables used in LR. ML techniques can be used to build 
model to predict SREs in cancer patients with BM.

INTRODUCTION

Bone is the most common site of metastasis in 
cancer. Cancer metastases to the bone are most prevalent 
among patients with advanced cancer of the breast (73%), 
prostate (68%), or lung (36%) [1]. Bone metastases (BM) 
can lead to skeletal-related events (SREs), defined as 
pathologic fracture, spinal cord compression, requirement 
for radiation, surgery to bone, and hypercalcemia [2–7]. 
Data from the untreated arms of clinical trials indicates that 
SREs are most common in patients with BM secondary 
to breast cancer (2-year cumulative incidence of 68%), 
followed by prostate cancer (2-year cumulative incidence 
of 49%), and non-small cell lung cancer (NSCLC) and 
other solid tumors (OST) (21 month cumulative incidence 
of 48%) [8–10]. Observational studies yielded similar 
patterns, with a 1-year cumulative incidence of SREs after 

BM diagnosis of 46% in prostate cancer patients and 38% 
in female breast cancer patients [11, 12].

BM and subsequent SREs can be an important 
burden on a cancer patients’ quality of life (QOL) and 
overall health status [13, 14]. SREs will dramatically 
reduce patients’ QOL and even shorten survival [15]. 
The aim of the BM treatment is to prevent the occurrence 
of SREs. Many risk factors play important roles in the 
incidence of SREs. But in clinical, physicians could only 
predict the occurrence of SREs by subjective experience. 
Multidimensional analysis of SREs requires considerable 
effort and expertise, demanding the development of more 
sophisticated ways to facilitate such complex, preferably 
automatic analysis [16].

Machine learning (ML) utilizes a variety of artificial 
intelligence and statistical models to learn from the 
observed data in order to create reasonable generalizations, 
discover patterns, classify previously unseen data or 
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predict new directions [17]. The medical field is quickly 
embracing ML methodologies, such as decision tree (DT), 
support vector machine (SVM), as these approaches have 
shown progress in their usefulness in prediction and 
classification. Predictive models are used in a variety of 
medical domains for diagnostic and prognostic tasks. An 
increasingly large number of medical data are collected 
routinely, and often automatically, in many areas of 
medicine [18]. This implementation could prove useful in 
discovering ways to lower the cost of medication, improve 
clinical studies and help facilitate better assessments by 
physicians [19]. It is a opportunity for the field of ML 
and statistics to extract useful information and knowledge 
from this wealth of data [18].

ML has been used in the medical field to diagnose 
lung cancer, breast cancer, asthma, heart disease, 
dementia and other diseases and conditions. But there 
is no published research using supervised ML to predict 
SREs in cancer patients with BM. The purposes of this 
study were to identify the factors influencing SREs, to 
compare the accuracy of logistic regression(LR)-, DT- and 
SVM-based models in predicting SREs and to develop an 
effective and efficient model to predict SREs in cancer 
patients with BM that require intervention, based on 
laboratory tests commonly performed in clinical practice.

RESULTS

General characteristics of patients

Our study included 1143 patients with BM, median 
followup time was approximately 7 months.Table 2 shows 
the socio-demographic and clinical characteristics of the 
patients. 

622 patients (54.4%) had SREs, 284 patients 
(24.8%) had developed multiple SREs, 263 patients 
(23.0%) had prior SREs. The rank one SREs were 
radiation to bone, following by pathological fracture 
and surgery to bone (Table 3). Most of patients suffered 
from lung cancer, following by breast cancer, cancer of 
unknown primary and prostate cancer (Table 4).

Development of the LR model

Taking into account the 9 variables, the results of 
applying LR accuracy was 79.2%. VAS scale, Frankel 
classification, Mirels score, Gender, Cancer type, Ca, 
PINP, β-CTX and BALP are selected as significant 
variables in the LR model. A complete list of study 
variables in each variable set along with p-values are listed 
in Table 5.

Development of the DT model

Figure 1 shows DT classification of SREs in patients 
with BM. The DT classification of SREs consisted of  

4 variables which in order of importance were the 
following: VAS scale, PINP, CA 153 and BALP. In Figure 
1, each node shows the probability of SREs for patients 
with BM whom are satisfied in mentioned conditions in 
corresponding branches.

We used CART analysis to explore high-order 
interactions between variables. For example, CART 
analysis exhibited VAS scale is the most important factor 
affecting SREs in patients with BM. In individuals with 
VAS scale Grade 3, there is an interaction with CA153, 
while with VAS scale Grade 1 or 2, there is an interaction 
with PINP, and in patients with PINP  ≥ 101.8 ng/ml, there 
is an interaction with BALP. Figure 1 shows interactions 
between variables clearly. 

Development of the SVM model

To identify the variables that had the highest 
classification accuracy in prediction of SREs, we used 
SVM with radial basis function (parameter C = 1, 
γ = 1/number of features) that systematically searched 
through the space of subsets of variables, and evaluated 
the goodness of each variable subset according to the 
prediction accuracy. The variable subset showing the 
highest accuracy was identified as the predictor set. 
Parameter C is the weights between empirical error and 
generalization error. Parameter γ controls the shape of the 
separating hyperplane. It was similar to previous study on 
predictors of medication adherence in elderly patients with 
chronic disease [24].

We listed the top 8 ranked variables selected by 
SVM and their prediction accuracies using a combination 
of the top ranked variables together in Table 6 to examine 
the above results in detail. The accuracy using a single 
variable selected as VAS scale was 55.1%. The present 
accuracy of the SVM reached 67.4% with two variables, 
VAS scale and Frankel classification. The highest accuracy, 
97.1%, was achieved with eight predictors: VAS scale, 
Frankel classification, Ca, Cancer type, Gender, Mirels 
score, PINP and Character of BM. The performance was 
very markedly decreased when more than 8 features were 
selected. Unlike the intuition that having more variables 
should achieve higher predictive performance, we found 
that using a small number of variables can achieve higher 
prediction accuracy.

Comparison among prediction models

Table 7 compares the experimental results of LR, 
DT and SVM using 5 evaluation measures. SVM and DT 
showed better performance than LR in overall scoring 
categories, allowing identification of predictor candidates 
to determine the most probable SREs of a patient.

LR showed 79.2% accuracy when all 9 variables 
were used for the prediction of SREs (Tables 5 and 7). 
Compared to the result of LR, the result of DT showed 
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significantly higher accuracy, 85.8%, with only 4 variables 
on the same patient samples (Table 7). Compared to the 
result of LR, the result of SVM showed significantly 
higher accuracy, 88.2%, with 8 variables on the same 
patient samples (Table 7). This result indicates that ML 
techniques (DT and SVM) can achieve greater accuracy 
with a smaller number of variables than the number of 
variables used in LR. It is interesting to note that the most 
significant variable (VAS scale) selected by the DT and 
SVM agrees with that selected by LR. 

The results of the comparison of the discriminatory 
power of LR, DT and SVM models are summarized in 
Tables 7 and 8. The AUC indicates how well a prediction 
model discriminates between healthy patients and 
patients with disease. The following guidelines have 

been proposed for interpretation of this area: 0.5–0.7, 
rather low accuracy; 0.7–0.9, moderate accuracies useful 
for some purposes; and > 0.9, rather high accuracy [25]. 
Therefore, the classification accuracies of these models 
were moderate.

Our results indicated that the DT and SVM model 
had better diagnostic capability than LR model. The AUC 
had achieved a moderate diagnostic power. 

DISCUSSION

Health and medical data are exponentially 
increasing, necessitating various means to take advantage 
of huge amounts of data. Big data technologies enable 
the fast processing of massive amounts of data [26].  

Table 1: Summary of attributes included in the study
Attribute Represented as {permissible value}

Gender Categorical { Male (1) / Female (2) }

Age Numeric

KPS Scale Categorical { ≥ 70 (1) / < 60 (2) }

VAS scale Categorical { Grade 1 (1) / 2 (2) / 3 (3) }*

Character of BM Categorical { Lytic (1) / Blastic (2) / Mixed (3) }

The extent of BM Categorical { Soloway 1 (1) / 2 (2) / 3–4 (3) }**

Visceral metastases Categorical { Without (1) / With(2) }***

Frankel classification Categorical { A (1) / B (2) / C (3) / D (4) / E (5) / Without spine metastasis (6) }****

Mirels scale Categorical { Without extremity metastasis (0) / 4–6 (1) / 7–9 (2) / 10–12 (3) } *****

β-CTX Numeric

N-MID Numeric

PINP Numeric

BALP Numeric

CEA Numeric

CA125 Numeric

CA153 Numeric

CA199 Numeric

AKP Numeric

Ca Categorical { ≥ 2.6 mmol/l (1) / < 2.6 mmol/l (2) }

*Pain level on a 10-point scale, with 0 representing no pain and 10 representing the maximum pain intensity imaginable. 
Grade 1: 0–3, Grade 2: 4–6, Grade 3: 7–10.
**Soloway 0 refers to patients without BM; Soloway 1 refers to patients with < 6 BM; Soloway 2 refers to patients with < 20 
BM; Soloway 3 refers to patients with > 20 but less than a “super scan”; Soloway 4 refers to patients with ‘‘super scan’’ that 
is defined by a > 75% involvement of the ribs, vertebrae, and pelvic bones [19].
***Visceral metastases defined as distant metastases, except for BM, including brain metastases.
****Frankel classification of spinal cord injury [20]: Class A representing complete paralysis, Class B representing sensory 
function only below the injury level, Class C representing incomplete motor function below injury level, Class D representing 
fair to good motor function below injury level, and Class E representing normal function.
*****Mirels scoring system [21] based on pain intensity, site, type (lytic, mixed or blastic) and amount of bony involvement.
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Among these technologies, artificial intelligence has 
regained prominence as an important tool to provide 
intelligent services for big data, and ML techniques have 
also been used extensively for such purposes [27].

Traditional statistical methods, such as LR, have 
become increasingly difficult to use for prediction models 
due to several constraints that dictate the low statistical 
power with small sample size and complex polynomial 
interaction terms with curvilinear effects among the 
relationship of variables.

SVM and LR are similar in that both calculate a set 
of coefficients for variables based on a transformation of 
the feature space [28]. The major difference between SVM 
and LR is that while LR attempts to explicitly model the 
probability (via the odds) of outcomes, SVM attempts to 
directly find the best dividing hyperplane (or hyperplanes, 
in the case of more than two classes) regardless of the 
actual probability of class membership [27]. There are 
several advantages of SVM compared to LR. While in 
LR the data analyst must explicitly choose to increase the 
dimensionality of the feature space through the addition 
of interaction or polynomial terms among predictors, 
such transformations are standard practice in SVM 

approaches to classification [29]. In addition, SVM deals 
well with high-dimensional data, and they do not assume a 
parametric relationship between the model predictors and 
outcome.

DTs are classification algorithms which specify 
a “tree” of cut points that minimize some measure of 
diversity in the final nodes once the tree is complete. 
The final nodes then represent relatively homogenous 
individual classes [28]. To the extent that all data points 
classified at a given end node have a similar probability 
of class membership (that is, probability of treatment), 
then the output of DTs can be used to directly construct 
propensity categories [30]. Many methods for DTs 
(e.g. ID3, C4.5) do not provide a probability of class 
membership although some variants, in particular CART 
do provide such probabilities. However, performance of 
all DTs is dependent on both their method of construction 
and the amount of pruning (removal of highly specific 
nodes) performed. The major advantage of DT analysis 
over LR analysis is that the results of analysis are easy 
to understand. The simple allocation of patients into 
subgroups by following the flowchart form could define 
the predicted possibility of outcome.

Table 2: Baseline characteristics of patients
Variables All patients With SREs Without SREs

Gender (1/2) 614/529 382/240 232/289

Age (mean ± SD) 59.9 ± 23.7 58.8 ± 11.6 61.3 ± 32.8

KPS Scale (1/2) 969/174 515/107 454/67

VAS scale(1/2/3) 270/444/429 69/191/362 201/253/67

Character of BM (1/2/3) 917/83/143 517/34/71 400/49/72

The extent of BM (1/2/3) 178/610/355 108/316/198 70/294/157

Visceral metastases (1/2) 623/520 347/275 276/245

Frankel classification (1/2/3/3/5)* 20/20/56/58/843 20/19/47/47/418 0/1/9/11/425

Mirels (1/2/3)** 38/228/25 13/132/22 25/96/3

β-CTX (mean ± SD) 772.9 ± 488.4 810.5 ± 548.2 741.6 ± 430.2

N-MID (mean ± SD) 22.4 ± 40.1 24.4 ± 45.3 20.8 ± 35.0

PINP (mean ± SD) 166.3 ± 156.5 195.8 ± 193.3 141.7 ± 111.8

BALP (mean ± SD) 35.7 ± 25.4 35.8 ± 26.0 35.5 ± 24.6

CEA (mean ± SD) 173.4 ± 569.1 203.8 ± 499.0 148.0 ± 620.8

CA125 (mean ± SD) 171.8 ± 473.3 195.6 ± 592.6 143.3 ± 265.1

CA153 (mean ± SD) 91.1 ± 213.0 91.9 ± 205.9 90.4 ± 218.9

CA199 (mean ± SD) 299.5 ± 1034.9 347.0 ± 1196.2 259.8 ± 877.3

AKP(mean ± SD) 184.7 ± 217.0 194.4 ± 241.5 176.6 ± 194.0

Ca (1/2) 1091/52 570/52 521/0
*Among 997 patient with spine metastasis, 551 with SREs, 446 without SREs.
**Among 291 patient with extremity metastasis , 167 with SREs, 124 without SREs.
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In this study, ML models based on routinely 
available clinical and laboratory parameters were 
constructed for SREs prediction in cancer patients with 
BM. As expected, ML techniques (DT and SVM) showed 
greater accuracy with a smaller number of variables 
than the number of variables used in LR, because they 
establish the optimal classifier to maximize the geometric 
margin between samples and therefore minimize empirical 
classification errors. In this analysis, VAS scale was 
revealed as the strongest predictor of SREs. VAS scale, 
PINP, CA153 and BALP were selected as the predictors 
of SREs according to the DT model. In SVM, VAS scale, 
Frankel classification, Ca, Cancer type, Gender, Mirels 
score, PINP and Character of BM were selected as the 
predictors.

Most of SREs were radiation to bone, and the aim 
of radiation was to relieve pain. Bone surgery also had the 
analgesic effect. That maybe the reason why VAS scale 
was revealed as the strongest predictor of SREs. These 
findings suggested that providing appropriate analgesic 
therapy may reduce the occurrence of SREs. Frankel 
classification was designed for the assess of spinal cord 

compression, while Mirels score for limbs pathological 
fracture. These clinical factors were also revealed as the 
predictor of SREs. These BTMs and tumor markers were 
not linear with SREs. In DT, patients with moderately 
elevated PINP, BALP were with the highest proportion 
of SREs. SREs are complex phenomenons with many 
causes and correlates. SREs are not only related with bone 
formation and bone resorption, but also with the sites of 
BM, soft tissue mass and many other factors. Serum BTMs 
could only reflect bone formation and bone resorption, that 
maybe the reason why serum BTMs were not as well as 
clinical factors in the prediction of SREs.

We found that the occurrence of SREs in our study 
was higher than some clinical trials. The reason was 
because we defined percutaneous osteoplasty (PO) as 
bone surgery. PO can immediately restore the mechanical 
properties of the affected skeletal segment, provide the 
treated bones with increased resistance to compressive 
stresses, and prevent further risk of fractures, allowing 
immediate weight-bearing. PO can be uesed not only in 
vertebral metastases, but also in pelvic, iliac, and femoral 
metastases. PO would be effective as a combined-modality 

Table 3: Summary of SREs in the study
SREs People Times

Total confirmed events 973 1123

Radiation to bone 347 (35.7%) 464 (41.3%)

Pathological fracture 248 (25.4%) 263 (23.4%)

Spinal cord compression 97 (10.0%) 97 (8.6%)

Surgery to bone 229 (23.6%) 245 (21.8%)

Hypercalcemia 52 (5.3%) 54 (4.9%)

Table 4: Summary of cancer type and SREs in the study
Cancer type All (%) With SREs Without SREs

Lung cancer 566 (49.5%) 256 (45.2%) 310 (54.8%)

Breast cancer 173 (15.1%) 115 (66.5%) 58 (33.5%)

Prostate cancer 71 (6.2%) 37 (52.1%) 34 (47.9%)

Urinary cancer 56 (4.9%) 38 (67.9%) 18 (32.1%)

Colorectal cancer 54 (4.7%) 32 (59.3%) 22 (40.7%)

Esophagus and stomach cancer 40 (3.5%) 20 (50.0%) 20 (50.0%)

Liver cancer 35 (3.1%) 29 (82.9%) 6 (17.1%)

Nasopharyngeal cancer 20 (1.7%) 12 (60.0%) 8 (40.0%)

Thyroid cancer 16 (1.4%) 11 (68.8%) 5 (31.2%)

Gynecologic cancer 16 (1.4%) 12 (75.0%) 4 (25.0%)

Cancer of unknown primary 78 (6.8%) 46 (59.0%) 32 (41.05)

Other cancer 18 (1.6%) 14 (77.8%) 4 (22.2%)
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Table 5: LR model of SREs in patients with BM
Variable Coefficient SE p-value

VAS scale

1 –3.16 0.24  < 0.01

2 –2.27 0.21  < 0.01

3 –0.43 0.18  < 0.01

Mirels score

1 –2.58 0.89 0.24

2 –2.57 0.97 0.41

3 –2.43 0.89 0.31

Gender

1 1.65 0.21 0.22

Cancer type

1 –0.01 0.82 0.46

2 2.67 0.85 0.17

3 –0.04 0.87 0.96

4 0.19 0.89 0.83

5 0.48 0.88 0.58

6 0.66 0.97 0.49

7 0.93 1.00 0.35

8 –0.33 1.03 0.75

9 1.31 1.10 0.23

10 0.97 1.09 0.37

11 0.01 0.88 0.98

Frankel classification

1 –5.86 0.40  < 0.01

2 –5.42 0.45  < 0.01

3 –4.25 0.37  < 0.01

4 –4.65 0.38  < 0.01

5 –3.29 0.52  < 0.01

PINP –0.01 0.01 0.07

BALP 0.03 0.02 0.36

β-CTx –0.01 0.01 0.54

Ca

1 –1.21 0.05 0.02

Constant 5.74 0.92 0.63

SE: standard error, CI: confidence interval.



Oncotarget12618www.impactjournals.com/oncotarget

therapy for the treatment of BM [31]. We observed that 
suitable bone surgery, bone radiotherapy would not reduce 
patient's quality of life. This is just the opposite of what 
we defined in SREs. If there is a large clinical trial results 
can support this hypothesis, it will have a great impact on 
this model.

Our study is, to the best of our knowledge, the first 
attempt to use ML techniques to identify the influencing 
factors and to apply prediction models for the SREs of the 
cancer patients with BM as an alternative and complement 
to the traditional statistical approaches. We only used 
SPSS and SPSS Modeler to construct all the DT, SVM 
and LR model. As we all know, SPSS is widely used in 
the medical field for its user friendly. It would be easier 
for other physicians to use the models in SPSS than other 
software. ML models may open new possibilities to find 
health-related factors that otherwise would be hidden in 
traditional analysis methods. We used ML techniques 

as a supplement to the LR to develop prediction models 
for SREs risk groups. Our study can be used as data in 
healthcare for the development of new clinical assessment 
and interventions for the cancer patients with BM. In other 
words, it would be possible to develop, specifically for the 
cancer patients with BM, an SREs measurement tool that 
helps prioritize intervention for SREs risk groups. Based 
on the identified influencing factors, this study could also 
provide guidelines for healthcare staff in caring for the 
cancer patients with BM and could help fine-tune and 
improve healthcare intervention in practice.

Identification of the risk factors associated with 
SREs development in cancer patients with BM is essential 
for formulating personalized surveillance programs. 
Treatment of BM aims to prevent the incidence of SREs 
includes orthopedic management, radiation, surgery, and 
systemic treatments (eg, bone-targeting agents (BTAs), 
endocrine therapy and chemotherapy). Our Network 

Figure 1: DT model of SREs in patients with BM.
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Meta-Analysis showed denosumab, zoledronate and 
pamidronate were generally effective in preventing 
SREs in cancer patients with BM and denosumab and 
zoledronate were also associated with reductions in risk 
of pathologic fractures and radiation compared to placebo 
[32]. The research was not finished when these model 
were found, and the model should included some decision 
support system. Our models can predict SREs and then 
direct when and what treatment should be done. With 

low and medium level, we would give patients BTAs; 
and for high level, we would give patients orthopedic 
management, radiation even surgery. After PO, SREs 
especially pathologic fracture were rarely happened in the 
treated bone. So PO is highly recommend in the high level 
patients for its highly effective and safety.

The current study has several limitations, which 
have to be improved for prospective studies in prediction 
modeling.

Table 6: Combination of the top eight variables and classification accuracy in SVM
No. of variables Combined variables in ranking order Accuracy (%)

1 VAS scale 55.1

2 VAS scale, Frankel classification 67.4

3 VAS scale, Frankel classification, Ca 76.6

4 VAS scale, Frankel classification, Ca, Cancer type 84.3

5 VAS scale, Frankel classification, Ca, Cancer type, Gender 91.7

6 VAS scale, Frankel classification, Ca, Cancer type, Gender, Mirels score 94.4

7 VAS scale, Frankel classification, Ca, Cancer type, Gender, Mirels score, 
PINP 96.2

8 VAS scale, Frankel classification, Ca, Cancer type, Gender, Mirels score, 
PINP, Character of BM 97.1

Table 7: Comparison between LR, DT and SVM

Model Predicted 
positive

Predicted 
negative

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%) PPV (%) NPV (%)

LR 79.2 79.4 78.9 81.8 76.3

Positive 494 128

Negative 110 411

DT 85.8 87.9 83.3 86.2 85.3

Positive 547 75

Negative 87 434

SVM 88.2 88.6 87.7 89.6 86.5

Positive 551 71

Negative 64 457
PPV: positive predictive value, NPV: negative predictive value.

Table 8: Comparison of AUC between LR, DT and SVM

Model AUC SE
95% CI for Exp (B)

Lower Upper

LR 0.792 0.012 0.767 0.815

DT 0.856 0.011 0.835 0.876

SVM 0.882 0.010 0.861 0.900
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First, it was limited to examining the impacts of 
individual variables. We did not examine how each variable 
affects others; nor did we study the nature of direct or 
indirect influencing factors. In future studies, we need 
to study how they affect predictability by identifying the 
meaning and detailed univariate analysis will be needed.

Second, the classification accuracies of these models 
were moderate. In our study, the cross validation method 
used the same data as the test data and the training data. If 
there are enough samples in the future, we will be able to 
get more accurate results by ensuring that the test data and 
the training data are separated in advance.

In this study, we sought to assess the capacity of 
LR, DT and SVM models to predict SREs, with the goal 
of developing a more predictive profile for identifying 
important clinical risk facts that affect SREs recurrence. 
We found that ML served as an effective alternative to 
conventional LR in identifying the key variables to show 
the higher classification accuracy, thereby created valuable 
diagnostic programs for SREs prediction. 

MATERIALS AND METHODS

Data collection

This cross sectional retrospective study enrolled 
1143 cancer patients with BM of both sexes, recruited 
from Department of Internal Oncology, Shanghai Sixth 
People’s Hospital in the period between June 2007 
and June 2014. This study was approved by the ethics 
committee of the Sixth People’s Hospital, Shanghai Jiao 
Tong University. The principles of the Declaration of 
Helsinki were followed. Written consent was obtained. 
The diagnosis of cancer had been made by using the 
standard clinical criteria.

Feature selection and reduction

A subset of 19 features including routine laboratory 
workup (categorical or numerical) was used for the model 
building process (Table 1). The dataset was created 
containing 2 demographic variables (age, gender), 2 general 
conditional variables {Karnofsky Performance Scale (KPS) 
and Visual Analog Scale (VAS)}, 3 metastases variables 
(Character of BM, extent of BM and Visceral metastases), 2  
injured variables (Frankel classification of spinal cord 
injury and Mirels scale), 4 bone turnover markers(BTM) 
{bone-specific alkaline phosphatase (BALP), N-terminal 
midfragment of osteocalcin (N-MID), aminoterminal 
propeptide of type I collagen (PINP) and β-cross-linked 
carboxyterminal telopeptide of type I collagen (β-CTx)}, 2  
biochemical variables {alkaline phosphatase (AKP) and 
Serum calcium} and 4 tumor markers (CEA, CA125, 
CA153 and CA199). These variables were selected because 
they were of potential clinical importance as indicated 
by a panel of experts. A number of data transformation 

techniques have been used to format and prepare the patient 
records to be processed by the learning algorithms (Table 1).

Construction of the prediction models

In this study, SPSS 19® and SPSS Modeler 14.1® 
(IBM, Armonk, NY, USA) were used to construct the DT, 
SVM and LR models. A p-value ≤ 0.05 was considered 
to be significant for inclusion into the model. To validate 
each prediction model, we used a 10-fold cross validation. 
In 10-fold cross-validation, the data set is divided into 10 
folds with equal size. Then training is carried out with 9 
and testing with 1; the process is repeated until all parts 
have been tested.

A binary LR was performed to determine the data 
set under consideration, associates each record (a patient) 
with the probability of SREs. Stepwise selections of the 
independent variables were stepwise incremented and the 
corresponding coefficients were computed.

We constructed the DT as classification and 
regression trees (CART). The approach builds a binary 
tree by splitting the records at each node according to a 
function of a single input field. The evaluation function 
used for splitting in CART is the Gini index [23]. One 
of the most critical problems in tree construction is 
determining an appropriate size of tree. Standard methods 
use a “stopping rule” to determine appropriate tree sizes.

We used SVM with radial basis function (RBF) as 
kernels. The “SVM” function in SPSS Modeler was used 
to build our SVM model with the radial basis function 
kernel applied as its classification method.

Comparison between prediction models

Comparisons among LR, DT and SVM discrim-
ination for all models were performed. Sensitivity, 
specificity, positive predictive value (PPV), negative 
predictive value (NPV), and accuracy were adopted to 
evaluate the performance of a model. Area under curve 
(AUC) was calculated to test the ability of each model to 
distinguish patients.

Statistical analysis

Patients were categorized into with SREs and 
without SREs. Qualitative variables were expressed by 
number, percent and compared by chi square or fishe’ s 
exact test. Quantitative variables were expressed by mean 
and standard deviation (SD) and compared by t student. 
Sensitivity, specificity, PPV, NPV and accuracy were 
calculated subsequently.
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