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Figure 4: Imaging PD-L1 expression in subcutaneous and orthotopic lung cancer xenografts with [111In]PD-L1-mAb 
and NIR-PD-L1-mAb. NSG mice with subcutaneous H2444 or H1155 xenograft were administered intravenously with 14.8 MBq 
(400 μCi) of [111In]PD-L1-mAb or 22 µg of NIR-PD-L1-mAb and images were acquired at the specified time after the injection of the 
mAbs. 3D volume rendered whole body images demonstrating specific accumulation of activity in the H2444 tumors at 120 h and not 
in the H1155 tumors A. Ex vivo biodistribution analysis of the [111In]PD-L1-mAb, at 144 h after injection, in the same tumor models 
B. Immunohistochemical analysis for PD-L1 expression demonstrating intense immunoreactivity in H2444 tumors compared to H1155 
tumors C. NSG mice with orthotopic H2444 xenografts were administered with 14.8 MBq (400 μCi) of [111In]PD-L1-mAb and SPECT/
CT images were acquired. Transaxial SPECT/CT images showing specific accumulation of activity in orthotopic H2444 xenograft at 72 
h and 120 h after injection of the [111In]PD-L1-mAb and the corresponding histology D. Optical images of subcutaneous H2444 or H1155 
xenograft acquired in the 800nm NIR channel E. and ex vivo biodistribution analysis of fluorescence intensity in tissues (n = 3) F. SPECT 
images were decay corrected and adjusted to the same maximum value to show the clearance of the imaging agent. The significance of the 
value is indicated by asterisk (*) and the comparative reference is the tumor with low PD-L1 expression. Arrows and circles depict tumors. 
*p < 0.05. **p < 0.01.
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above. IF was calculated using the Lindmo assay [37]. All 
in vitro studies were performed in triplicate and repeated 
three times. 

SPECT/CT imaging and analysis

Whole-body SPECT-CT images were acquired on 
an X-SPECT small animal SPECT/CT system (Gamma 
Medica Ideas, Northridge, CA, USA) as described 
previously [38]. Briefly, after an intravenous injection of 
approximately 400 µCi of [111In]PD-L1-mAb (100 µg of 
antibody, n = 3), images were acquired at the specified 
time points in mice. The tomographic data were acquired 
in 64 projections over 360o, at 45 s per projection, 
using medium energy pinhole collimators. CT images 
were acquired in 512 projections to allow anatomic co-
registration. Images were reconstructed using the ordered 
subsets-expectation maximization algorithm, and 3D 
volume rendered decay corrected images were generated 
using Amira 5.5.0 software (Visage Imaging Inc.).

Ex vivo biodistribution

Specific activity of [111In]PD-L1-mAb was 
optimized for in vivo distribution and tumor uptake in 
mice harboring CHO-PDL1 and CHO xenografts. Mice 
(n = 3-5/group) were injected intravenously with 40 µCi 
of [111In]PD-L1-mAb alone (approximately ~ 8.5 μg of 
the protein), or in combination with 10, 30, and 90 µg of 
unmodified PD-L1-mAb. For the blocking study, mice 
were pre-injected with 1.5 mg of unmodified mAb 30 min 
before injection of [111In]PD-L1-mAb. Blood, tumors, and 
selected tissues were harvested, weighed and counted in 
an automated gamma counter (1282 Compugamma CS, 
Pharmacia/LKBNuclear, Inc.) at 48 h after the [111In]PD-
L1-mAb injection. Following this optimization, all other 
biodistribution studies were performed with 40µCi [111In]
PD-L1 mAb combined with 30 µg of unmodified mAb. 

Biodistribution studies were also carried out to 
confirm the imaging study results in CHO/CHO-PDL1, 
SUM149/MDAMB231 and H1155/H2444 xenograft 
models with low or high expression of PD-L1 respectively, 
at various time points after [111In]PD-L1-mAb injection. 
The percentage of injected dose per gram of tissue 
(%ID/g) values were calculated based on signal decay 
correction and normalization to external 111In standards, 
which were measured in triplicate. Biodistribution data 
shown is mean ± the standard error of the mean (SEM).

Optical imaging

PD-L1 expression in different tumor models was 
assessed by optical imaging using NIR-PD-L1. The NIR-
PD-L1 (22 μg) was injected into the tail vein of the mice 

(n = 3-5) bearing tumors with low and high expression 
of PD-L1. Mice were anaesthetized with isoflurane and 
serial images of the dorsal, left lateral, ventral and right 
lateral surfaces were captured using the Pearl Impulse 
Imager in white light and 800 nm channels (Software 
v2.0, LI-COR Biosciences) at 24, 48, 72, 96 and 120 h 
post injection. On day 5 after the injection of NIR-PD-
L1-mAb, mice were euthanized and tumors and selected 
tissues were dissected and imaged ex vivo. To quantify the 
signal, equal sized regions of interest (ROIs) were drawn 
on tumors and tissues and on an area outside the mouse 
and representative of background. Mean signal intensity in 
each ROI was normalized by subtracting the background 
signal, and used for statistical analysis. Data shown is 
mean fluorescence intensity values ± SEM.

Immunohistochemistry

Tumor sections were evaluated for PD-L1 
expression by immunohistochemistry (IHC). Harvested 
tumors were fixed in 10% neutral buffered formalin, 
embedded in paraffin, and 4 μm thick sections were 
obtained on slides. After deparaffinizing with xylene and 
alcohol gradients, antigen retrieval was done using 10 
mM citrate buffer, pH 6.0 (#S1699, Dako target retrieval 
solution). Tumor sections were then treated with 3% 
H2O2 for 10 minutes, blocked with 5% goat serum for 1 
h, and then incubated with a primary anti-human PD-L1 
antibody (#13684, Cell Signaling) at 1:500 dilution at 
4oC overnight. Subsequently, using Dako CSAII Biotin-
free Tyramide Signal Amplification System kit, slides 
were incubated with secondary antibody, amplification 
reagent, and with anti-fluorecein-HRP. Finally, staining 
was carried out by adding DAB chromogen. Sections were 
counterstained with hematoxylin, followed by dehydration 
with alcohol gradients, xylene washes and mounted with 
a cover slip.

Data analysis

Statistical analysis of in vitro receptor binding assay 
data and ex vivo biodistribution data were performed with 
Graphpad Prism 6 software using an unpaired two-tailed t 
test. When P < 0.05, the difference between the compared 
groups was considered to be statistically significant. 
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