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ABSTRACT
A section of gastric cancers presents nuclear β-catenin accumulation correlated 

with H. pylori infection. H. pylori stimulate Wnt/β-catenin pathway by activating 
oncogenic c-Met and epidermal growth factor receptor (EGFR), or by inhibiting tumor 
suppressor Runx3 and Trefoil factor 1 (TFF1). H. pylori also trigger Wnt/β-catenin 
pathway by recruiting macrophages. Moreover, Wnt/β-catenin pathway is found 
involved in H. pylori-induced gastric cancer stem cell generation. Recently, by using 
gastroids, researchers have further revealed that H. pylori induce gastric epithelial 
cell proliferation through β-catenin. These findings indicate that Wnt/β-catenin is 
an oncogenic pathway activated by H. pylori. Therefore, this pathway is a potential 
therapy target for H. pylori-related gastric cancer.

INTRODUCTION

Wnt/β-catenin pathway, also called canonical 
Wnt pathway, is crucial to embryo development and 
adult tissue homeostasis [1, 2]. Aberrant activation of 
this pathway can cause uncontrolled cell growth and 
cell malignant transformation [1, 2]. This oncogenic 
pathway is initiated by some secreted glycoproteins, such 
as Wnt1 and Wnt3a. The binding of these Wnt proteins 
to their membrane receptor Frizzled and co-receptor 
lipoprotein receptor-related protein 5/6 (LRP5/6) leads to 
the dissociation of β-catenin from its degrading complex. 
Thereafter, β-catenin escapes from phosphorylation by 
glycogen synthase kinase 3β (GSK3β) and subsequent 
degradation by ubiquitin-proteasome system (UPS). The 
accumulated β-catenin in the cytoplasm translocates into 
the nucleus, and combines with transcription factor T cell 
factor/lymphocyte enhancer factor (TCF/LEF) (Figure 1). 

Helicobacter pylori (H. pylori) infection is a strong 
risk factor for gastric cancer. The underlying mechanisms 
include chronic inflammation in gastric mucosa, genetic 
and epigenetic alterations of tumor suppressor genes, 
activation of oncogenic signals, and generation of gastric 
cancer stem cells (CSC) (Figure 2). Chronic inflammation 
has been recognized as a hallmark of cancer in the recent 
decade [3, 4]. Aberrant activation of immune cells and 
overproduction of inflammatory cytokines promote 

gastric cancer development [5-8]. Infection with H. pylori 
can induce gastric pre-malignancies by recruiting bone 
marrow-derived cells (BMDCs) [9, 10]. H. pylori can 
cause DNA double-strand breaks directly [11], and cause 
DNA damage indirectly by stimulating the generation 
of reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) [12, 13] or by increasing the activity of 
cytidine deaminase [14]. Hypermethylation as well as 
subsequent downregulation of tumor suppressor genes is 
an important epigenetic mechanism in H. pylori-related 
gastric carcinogenesis [15]. H. pylori induce gastric 
epithelial cell epithelial-mesenchymal transition (EMT), 
and generate potential cancer stem cells [16, 17]. H. pylori 
also stimulate some oncogenic pathways. Activation of 
epidermal growth factor receptor (EGFR) can resist H. 
pylori-induced gastric epithelial cell apoptosis [18, 19]. 
Moreover, increasing evidence has indicated that Wnt/β-
catenin pathway is implicated in H. pylori-induced gastric 
carcinogenesis.

NUCLEAR Β-CATENIN ACCUMULATION 
IN GASTRIC CANCERS

Investigations on gastric cancer specimens showed 
that about 20%~30% gastric cancers presented nuclear 
β-catenin accumulation [20, 21]. Some mutations were 
identified in β-catenin exon 3 that encodes serine-
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threonine phosphorylation sites for the GSK3β [20, 21]. 
These mutations protect β-catenin from phosphorylation 
by GSK3β and degradation by UPS. However, most 
of gastric cancer specimens with nuclear β-catenin 
accumulation did not harbor β-catenin mutation [20, 
21]. In colon cancer, APC expression was frequently 
downregulated, leading to the disassembly of β-catenin 
degradation complex [22]. Unlike colon cancer, neither 
APC mutation [23, 24] nor APC methylation [25] seemed 
to be involved in gastric cancer. These findings suggest 
that other factors are involved in Wnt/β-catenin activation 
in gastric cancers. 

Several studies from a same group demonstrated the 
attribution of H. pylori to nuclear β-catenin accumulation. 
Nuclear β-catenin mainly localized in epithelial cells 
within the proliferative zone in antral glands, and appeared 
more frequently in H. pylori cytotoxin-associated gene A 
(CagA)-positive specimens, compared with either CagA-
negative or uninfected patients [26]. CagA-positive H. 
pylori could induce nuclear β-catenin accumulation in vivo 
and in vitro [26-28]. Recently, the group further revealed 
that H. pylori promoted gastric epithelial cell proliferation 
through β-catenin by using gastroids, three-dimensional 
organ-like structures [29]. 

ACTIVATION OF ONCOGENIC C-MET 
AND EGFR BY H. PYLORI

Aberrant activation of c-Met receptor occurred 
commonly in gastric cancers [30]. Infection with CagA-
positive H. pylori induced phosphorylation of c-Met 
and gastric epithelial cell proliferation [31, 32]. Upon 
translocating into the cytoplasm, CagA combined with 
c-Met and CD44 to form a functional complex [31, 32]. 
CD44 deficiency or inhibition blocked H. pylori-induced 
gastric epithelial cell proliferation and atrophic gastritis 
[32]. Activation of c-Met triggered phosphatidylinositol 
3-kinase (PI3K)/Akt signaling and caused β-catenin 
accumulation [33]. C-Met-PI3K-β-catenin pathway is also 
involved in colorectal cancer. Activation of this pathway 
promoted cell invasion and proliferation, and protected 
cells from apoptosis [34]. On the contrary, inactivation 
of c-Met augmented GSK3β activity and β-catenin 
degradation [35]. Interestingly, β-catenin accumulation 
could also upregulate c-Met expression [35, 36], indicating 
a positive feedback between c-Met and β-catenin in 
carcinogenesis. 

EGFR signals another oncogenic pathway in H. 
pylori-related gastric cancer [18, 19]. Unlike c-Met, 

Figure 1: Wnt/β-catenin signal pathway. Upon the binding of Wnt proteins to their receptors, β-catenin dissociates from its degrading 
complex, which consists of scaffold protein AXIN, casein kinase 1α (CK1α), tumor suppressor adenomatous polyposis coli (APC), and 
glycogen synthase kinase 3β (GSK3β). The accumulated β-catenin in cytoplasm then translocates into nucleus. P: Phosphorylation. 



Oncotarget35581www.impactjournals.com/oncotarget

activation of EGFR involved vacuolating cytotoxin A 
(VacA) [37], CagE [38], CagL [39], H. pylori secretory 
protein HP0175 [40], and outer inflammatory protein 
A (OipA) [41], whereas not CagA. Indeed, CagA 
inactivated EGFR by activating SH2 domain-containing 
protein tyrosine phosphatase (SHP-2) [42]. H. pylori 
induced EGFR phosphorylation, and then activated 
PI3K/Akt pathway [19]. Activation of EGFR-PI3K/Akt 
signaling resulted in GSK3β suppression and β-catenin 
accumulation via VacA or OipA [41, 43, 44]. These 
observations indicate that intracellular pathways initiated 
by EGFR and c-Met converge at PI3K/Akt-GSK3β-β-
catenin under H. pylori infection (Figure 3). 

DOWNREGULATION OF TUMOR-
SUPPRESSOR RUNX3 AND TFF1 BY H. 
PYLORI

Runx3 is an important tumor suppressor for gastric 
cancer. Runx3 expression was frequently downregulated in 
gastric cancer cells because of promoter hypermethylation. 
The clinicopathological analysis on gastric cancers and 
premalignant lesions showed that Runx3 hypermethylation 
was correlated with H. pylori infection [45, 46]. In 

addition to gene hypermethylation, other mechanisms are 
also involved in H. pylori-induced Runx3 downregulation. 
CagA could directly associate with Runx3 through a 
specific recognition of the PY motif of Runx3 by a WW 
domain of CagA, and result in the ubiquitination and 
degradation of Runx3 [47]. CagA could also reduce 
Runx3 mRNA expression by inhibiting Runx3 promoter 
activity [48]. Runx3 suppressed Wnt/β-catenin pathway 
by forming a ternary complex with β-catenin/TCF4 [49]. 
Therefore, Runx3 loss upregulated the expression of Wnt/
β-catenin target genes, and induced gastric carcinogenesis 
[50] (Figure 3). 

Trefoil factor 1 (TFF1) was expressed in normal 
gastric mucosa [51], but frequently downregulated 
in gastric cancers because of gene mutation [52] and 
promoter hypermethylation [53]. Recombinant TFF1 
protein inhibited gastric epithelial cell proliferation, 
whereas mutant TFF1 protein lost this effect [54]. 
Moreover, animals with TFF1 inactivation developed 
gastric pre-malignant lesions and gastric cancer [55]. 
These studies indicate that TFF1 is a crucial tumor 
suppressor for gastric cancer. It is unclear whether H. 
pylori can induce TFF1 gene mutation, but there is 
evidence suggesting that H. pylori are responsible for 
TFF1 gene hypermethylation. TFF1 was significantly 

Figure 2: The mechanisms underlying gastric carcinogenesis induced by H. pylori. The mechanisms include chronic 
inflammation in gastric mucosa, genetic and epigenetic alterations of tumor suppressor genes, activation of oncogenic signals, and 
generation of gastric cancer stem cells (CSC).
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downregulated and frequently methylated in H. pylori-
positive mucosa, compared with H. pylori-negative 
mucosa [53, 56]. In N-methyl-N-nitrosourea (MNU)-
induced gastric cancers, TFF1 methylation was increased 
after H. pylori infection [53]. TFF1 inhibited Akt and 
GSK3β phosphorylation through protein phosphatase 2A 
(PP2A), and then reduced β-catenin nuclear translocation 
and TCF transcription activity [57]. On the contrary, TFF1 
loss promoted H. pylori-induced oncogenic activation of 
β-catenin [58] (Figure 3). 

MACROPHAGES CONNECTING 
INFLAMMATION WITH WNT/Β-
CATENIN ACTIVATION

It has been well accepted that tumor-associated 
macrophages (TAMs) promote cancer development. 
H. pylori infection recruited macrophages via 
monocyte chemoattractant protein-1 (MCP-1) [7, 59] 
or Sonic Hedgehog (Shh) [60] in gastric mucosa. These 
macrophages produced pro-inflammatory cytokines, 
such as TNF-α and IL-1β. TNF-α could activate Wnt/β-
catenin via Akt-GSK3β signaling in gastric cancer [6, 
7] (Figure 3). Macrophage-derived IL-1β inhibited 
GSK3β activity and β-catenin degradation, and enhanced 
TCF transcription activity in colon cancers [61]. The 

suppression of GSK3β by IL-1β depended on NF-κB 
and Akt activation [62]. Macrophages are also involved 
in Wnt/β-catenin activation in cholangiocarcinoma [63]. 
These observations demonstrate macrophages as important 
linkers between chronic inflammation and Wnt/β-catenin 
activation.

MICRORNAS: POTENTIAL LINKERS 
BETWEEN H. PYLORI INFECTION AND 
WNT/Β-CATENIN ACTIVATION

MicroRNAs (miRs) are small noncoding RNAs 
that can up- or downregulate the expression of oncogenes 
and tumor suppressors. Some miRs, such as miR-
101, mir-124a, miR-203, miR-210 and miR-320, were 
downregulated by H. pylori. MiR-101 and miR-320 
were inhibited by H. pylori through CagA [64, 65]. 
Hypermethylation was responsible for miR-124a, miR-203 
and miR-210 downregulation [66-68]. The reduction in 
expression of these miRs activated Wnt/β-catenin pathway 
in different cells or tissues [69-73], indicating that these 
miRs functioned as tumor suppressors. On the contrary, 
miR-21, miR-155, and miR-222 were upregulated by 
H. pylori [74-76]. These miRs stimulated Wnt/β-catenin 
pathway, and functioned as oncogenes or tumor-promoters 
[77-79]. The implication of these miRs in Wnt/β-catenin 

Figure 3: Intracellular signalings mediating the activation of Wnt/β-catenin by H. pylori. Methyl: methylation.
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pathway in gastric cancer remains unknown. Actually, 
these miRs are candidates linking H. pylori infection with 
Wnt/β-catenin activation in gastric cancer (Table 1).

THE EFFECTS OF H. PYLORI ON 
UPSTREAM MOLECULES IN WNT/Β-
CATENIN PATHWAY

Some evidence indicates that H. pylori may activate 
Wnt/β-catenin pathway by affecting Wnt ligands, receptors 
or antagonists. H. pylori and TNF-α could induce Wnt10a 
and Wnt10b expression in gastric cancer cells [80, 81]. 
H. pylori infection could also activate Wnt co-receptor 
LRP6, and result in nuclear β-catenin accumulation [82]. 
Secreted Frizzled-related proteins (SFRPs) can combine 
with Wnt ligands or receptors to interfere Wnt signaling. 
These Wnt antagonists were frequently downregulated in 
gastric cancers due to gene promoter hypermethylation 
[83]. Actually, SFRP4 and SFRP5 methylation was found 
to be positively correlated with H. pylori infection [84]. 
In addition, Wnt3 [85], Wnt7a [86], Wnt7b [87] and Wnt 
receptor Frizzled [88], were also expressed in gastric 
cancer cells. The effects of H. pylori on these molecules 
are still unclear. 

THE  ROLE OF WNT/Β-CATENIN 
PATHWAY IN H. PYLORI-INDUCED 
GASTRIC STEM CELL GENERATION 
AND EXPANSION

Gastric stem cells are implicated in gastric cancer 
initiation and progression. Via CagA, H. pylori colonized 
stomach gland epithelium, and promoted stem cell-related 
gene expression and Lgr5(+) stem cell proliferation [89]. 
H. pylori also induced gastric epithelial cell EMT to 
generate gastric cancer stem cells, and this process was 
also via CagA [16]. The molecular mechanisms underlying 
H. pylori-induced EMT and stem cell generation remain 
largely unknown. Wnt/β-catenin pathway was important 
for gastrointestinal progenitor cell proliferation and 
differentiation [90, 91]. Activation of this pathway could 
induce EMT in gastric cancer [92, 93]. Recently, it was 
revealed that CagA induced EMT by inhibiting GSK-3 

activity [94]. Moreover, Wnt/β-catenin target CD44 was 
observed to be needed in H. pylori-induced gastric stem 
cell proliferation [95]. These findings indicate that H. 
pylori induce gastric stem cell generation and proliferation 
at least partly via Wnt/β-catenin pathway.

CONCLUSION 

Increasing evidence demonstrates Wnt/β-catenin 
as a crucial pathway stimulated by H. pylori in gastric 
carcinogenesis. H. pylori can upregulate Wnt/β-catenin 
activator c-Met and EGFR, and downregulate Wnt/β-
catenin suppressor TFF1 and RUNX3. H. pylori can also 
activate Wnt/β-catenin pathway by recruiting tumor-
associated macrophages. Importantly, via Wnt/β-catenin 
pathway, H. pylori induced gastric stem cell generation 
and expansion, promoting gastric cancer initiation and 
progression. 

However, there are still some questions need to be 
answered. Which signal molecule plays a dominant role in 
Wnt/β-catenin activation under H. pylori infection, c-Met, 
EGFR, TFF1, Runx3, or else? Can dysregulations of 
these molecules synergize in gastric cancer development? 
Which virulent factor of H. pylori plays a dominant 
role in Wnt/β-catenin activation, CagA, VacA or else? 
Given the complexities of H. pylori strains and host 
factors, more work should be done to find the answers. In 
addition, the effects of H. pylori on Wnt ligands, receptors 
and antagonists, and the roles of miRs in Wnt/β-catenin 
activation in gastric cancer, need to be further investigated. 

 Recently, a series of therapies antagonizing Wnt/β-
catenin pathway have entered clinical trials. As Wnt/β-
catenin pathway is essential for tissue homeostasis, it 
remains elusive about their clinical efficacy and safety 
[96]. H. pylori eradication can reduce the risk of gastric 
cancer, but it can not completely prevent H. pylori-related 
gastric carcinogenesis. One of the reasons is that the 
activation of oncogenic pathway, such as Wnt/β-catenin, 
has happened before H. pylori eradication. 
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Table 1: Potential microRNAs linking H. pylori infection with Wnt/β-catenin activation

miR Regulation 
by H. pylori Reference Effect on

Wnt/β-catenin Cell/Tissue Reference

21
101
124a
155
203
210
222
320

up 
down
down
up
down
down
up
down

74
64
66
75
67
68
76
65

activation
inhibition 
inhibition
activation
inhibition
inhibition
activation
inhibition

colorectal cancer
colorectal cancer
glioma
hepatocellular carcinoma
breast cancer
adipose 
breast cancer
prostate cancer

77
69
71
78
72
73
79
70
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