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ABSTRACT:
Since sodium stibogluconate (SSG) inhibited phosphatases including SHP-1 and 
augmented anti-tumor actions of IFN-α2b in vitro and in mice, two Phase I trials of 
SSG/IFN-α2b combination were undertaken to evaluate safety and target inhibition. 
Escalating doses of SSG (200-1200 mg/m2) and fixed doses of IFN-α2b (3x106 units/
m2) with or without chemotherapy (dacarbazine, vinblastine, cisplatin) were evaluated 
for side effects and impact on SHP-1 phospho-substrates and IFNα-stimulated-genes 
(ISGs) in peripheral blood in 40 patients with metastatic melanoma, soft tissue 
sarcomas, gastrointestinal stromal tumors, and breast or colorectal carcinomas who 
did not have other established treatment options. Common adverse events were 
bone marrow suppression, fatigue, gastrointestinal upset, and asymptomatic lipase 
elevation (n=13); the latter was dose related and mostly after 10d of SSG/IFN-α2b 
in combination. Levels of SHP-1 substrates (pSTAT1, pSTAT3, pLck and pSlp76) were 
increased (up to 3x) in peripheral blood cells following SSG with no potentiation by 
combination with IFN-α2b. Representative ISGs in peripheral blood were induced 
after IFN-α2b at 4 and 24 hrs with selective modulations by combination. The median 
time on trials was 2.3 months (10-281d) with no objective regression of disease. 
Alive at 1y were 17/40 (43%) patients and after 2y were 8/40 (20%) following 
treatment initiation. These data demonstrate that SSG impacted signal molecules 
consistent with PTP inhibition and was tolerated in combination with IFN-α2b. 
Phase II investigations of SSG could safely utilize doses of up to 1200 mg/m2 of SSG 
for up to 10d alone or in combination with IFN-α2b with or without chemotherapy. 

INTRODUCTION

PTPs are intracellular enzymes that act as the 
biochemical counterparts of tyrosine kinases [1]. Since 
their substrates are signal transducers activated or 
inactivated by phosphorylation to control cell growth, 
death or other functions, PTPs are key switches in 
signaling cascades that determine the fate of different 
cell types. In particular, the PTP SHP-1 [src-homology 
2 phosphatase-1, PTP1C, HCP, SHPTP-1, PTPN6] has 

been implicated as an attractive drug-targeting candidate 
by studies from our laboratory and others [2-6]. Expressed 
predominantly in cells of hematopoietic lineages [2-6], 
SHP-1 has been established as a key negative regulator 
of cytokine signaling and immune cell activation through 
detailed studies of mouse models of genetic SHP-1 
deficiencies [7-10]. Accordingly, targeting SHP-1 with 
inhibitors might augment the efficacy of cytokine therapy 
and immunotherapy, which are in clinical use for cancer 
treatment. In contrast to the significant numbers of protein 
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kinase inhibitors approved by FDA or under-pre-clinical 
and clinical evaluation for cancer treatment, few PTPs 
inhibitors have demonstrated pre-clinical anti-tumor 
activity and entered clinical trial for cancer. 

Our prior studies had identified sodium stibogluconate 
(SSG), a drug used for nearly 60 years to treat visceral 
leishmaniasis in humans [11], as a potent inhibitor of 
multi-PTPs that include SHP-1 and other PTPs critical in 
negative regulation cytokine signaling and immunity [12-
14]. Targeting intracellular PTPs by SSG was suggested by 
the reduced PTP activity of SHP-1 and SHP-2 from cells 
cultured in the presence of SSG (10 mcg/ml) [13, 14]. At 
clinically achievable level of the drug when administered 
at half the currently recommended dose (10 mg/kg body 
weight), SSG inhibited recombinant SHP-1 (100%), 
SHP-2 (80%) and PTP1B (70%) [12, 15]. Selectivity 
was indicated by its limited impact on recombinant 
MKP1 PTP under comparable conditions [12]. It is worth 
noting that all cancer therapeutic kinase inhibitors target 
multi-kinases. This may provide corresponding multiple 
impacts against the redundant pro-cancer mechanisms in 
vivo and could be critical for clinical efficacy [16]. Multi-
PTPs inhibitors may have clinical potential via a similar 
mode of operation and warrant investigation. 

A negative regulatory role of SSG-sensitive PTPs 
in the signaling by IFNs was established in mutant mice 
in which the expression of the PTPs was abolished 
individually by genetic mutation or through gene-knockout 
[17-19]. Cells from these mutant mice had marked 
increases in response and tyrosine phosphorylation of IFN-
alpha2 signaling molecules (e.g., Stat1) in comparison 
to control cells from normal mice [17-19]. Stat1 protein 
was activated through tyrosine phosphorylation following 
IFN-alpha2b stimulation to form ISGF3 (in complex 
with other molecules) which subsequently binds to 
ISRE to regulate gene expression[20]. Consistent with 
targeting the negative regulatory PTPs, SSG augmented 
IFN-alpha2b induced tyrosine phosphorylation of Stat1 
in human lymphoma cell line [14]. Augmentation of 
IFN-alpha2b induced Stat1 tyrosine phosphorylation by 

SSG was also defined in WM9 human melanoma cells 
[14]. Enhanced IFN-alpha2b signaling brought about by 
SSG in cancer cells was coincident with the inhibition 
of specific intracellular target PTPs by SSG [14]. Anti-
proliferative activity of IFN-alpha2b was potentiated by 
SSG in cancer cell lines of different tissue types [14]. 
Median effect analysis verified that SSG and IFN-alpha2b 
interacted in a synergistic manner (CI < 1)[21]. The ability 
of SSG to enhance significantly the anti-tumor effects of 
IFN-alpha2b in vivo was demonstrated in a mouse model 
with eradication of IFN-alpha2b-refractory tumors at a 
tolerable dose of the drug [14]. 

These studies, together with the safety of SSG in 
clinical use [15], provided the basis for Phase I trials of the 
combination of IFN-alpha2b and SSG, which as a multi-
PTPs inhibitor has the potential to augment the anti-cancer 
action of the cytokine. Two Phase I trials were performed 
in similar patient populations. The objectives were to 
establish a safe dose of SSG to be used in conjunction 
with IFN-alpha2b for Phase II studies and to identify 
evidence of SHP-1 inhibition and any antitumor activity. 

RESULTS

Patient Characteristics and Treatment 
Administration

Two trials with similar objectives were conducted. 
As described above, the first assessed SSG and IFN-
alpha2b alone and then in combination and the second 
SSG and IFN-alpha2b, again alone and in combination, 
followed by cytotoxic chemotherapy. Since the patient 
populations and adverse events from IFN-alpha2b and 
SSG in the two trials were alike, except as noted below, 
results were summarized together. Entered in total were 
40 patients with metastatic malignancies (melanoma 
n=29, soft tissue sarcomas n=5, gastrointestinal stromal 
tumors n=3, breast carcinoma n=1, and colorectal 

2Y06 (SSG+IFN)    3Y06 (SSG+IFN+Chemo) Both Studies combined
(n=18) (n=22) (n=40)

grade grade grade
Toxicity 2 3 4 2 3 4 2 3 4

Granulocytopenia 4 3 2 6 3 3 10 6 5
Thrombocytopenia 5 1 - 3 3 - 8 4 -

Anemia 7 - - 3 1 - 10 1 -
Fatigue 8 1 - 11 2 - 19 3 -
Fever 2 - - 7 - - 9 - -

G.I. upset 2 - - 9 3 - 11 3 -
Elevated lipase 2 5 2 2 1 1 4 6 3
Hypokalemia - - - - 3 - - 3 -

*Attributed (at least possibly) to treatment.  Of greatest severity by patient while on treatment

Table 1: Adverse Events Grade >2 by Study and Overall* 
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carcinoma n=2). These were patients for whom therapies 
of established effectiveness did not exist (prior radiation 
had been received by 13 and prior chemotherapy by 27). 
They were of median age of 53 (range 28-79), more of 
male gender (n=24), and mostly Caucasians (n=38). All 
patients were eligible and of ECOG performance status 
0 or 1. 

Side effects

The most common instances of adverse events, 
worse than mild and considered possibly related to 
treatment from the combined continuous administration of 
the treatment regimens in the two trials, were granulocyte 
reduction (n=21), fatigue (n=22), gastrointestinal upset 
(n=14), fever (9), platelet reduction (n=12), anemia 
(n=11), lipase elevation (n=13), and hypokalemia (n=3) 
(Table 1). At least one attributed severe or life-threatening 
event occurred in 27 (68%) of patients, which were most 
frequently the expected bone marrow suppression from 
IFN-alpha2b ± chemotherapy (n=15 patients). Other 
severe or life-threatening adverse events associated with 
treatment, all ones previously associated with these drugs 

on other trials, were instance of lipase elevations (n=5), 
hypokalemia (n=3), and fatigue (n=3) (Table 1). 

Asymptomatic lipase elevations (n=13) occurred 
most commonly after 10d of SSG in combination with 
IFN-alpha2b and were related to dose (p=0.04 by Fisher’s 
exact test of <800 mg/m2 to > 800 mg/m2). Neutropenia 
and thrombocytopenia resulting from IFN-alpha2b at the 
highest dose of SSG (1200 mg/m2) when compared to the 
lowest doses (200 or 400 mg/m2) were not significantly 
potentiated by the addition of SSG (data not shown). 

Progressive disease was the cause for terminating 
treatment in 28 patients. Five patients completed all 
planned cycles of treatment. Five patients were removed 
from study for adverse events (n=2 hypokalemia and one 
each of grade 4 lipase elevation, recurring neutropenia, 
and recurring nausea and vomiting). On a fourth cycle of 
treatment on the combination chemotherapy program after 
three relatively uncomplicated prior cycles, one patient 
died at a local hospital of a intra-cerebral event that could 
have been related to underlying disease or to treatment. 
Regardless of attribution 16/40 patients were assessed as 
having a one level decline in ECOG performance status 
and two patients as having > 2 level declines before 
removal from study. Median weight loss was 2.3 kg (mean 

Figure 1: SSG modulates peripheral blood cell phospho-proteins in patients. Peripheral blood samples were collected pre- and 
post-treatments from patients as indicated (A and D). Selective phospho-proteins in the samples were evaluated by SDS-PAGE/Western 
blotting with antibodies as indicated (B and E). The relative levels of the phospho-proteins were quantified by densitometry (C and F).
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loss of 3.0±3.5SD) kg (range -14.6 to +3.0 kg). Although 
progressive malignancy may have contributed, 13 patients 
lost more than 5% (grade 1) from starting weight during 
the period on treatment. Anorexia worse than mild was, 
however, reported in only two patients.

Peripheral blood cellular phospho-proteins

Given the putative targeting of PTPs by SSG, the 
impacts on selective phospho-proteins in peripheral blood 
cells were investigated in two cases (Fig 1). The selected 
molecules are reported substrates of the SSG-sensitive 
phosphatases and essential for T cell activation (pLck, 
pZap70 and pSlp76) or for IFN-alpha signaling (pSTAT1) 
[18, 22-26]. SSG monotherapy increased pSTAT1 levels 
(up to 3 x) (Fig 1C and F), treated at 400 mg/m2 and 
1,200 mg/m2 respectively (Fig 1A and D). It was evident 
within 1 hr post-treatment with durations up to 6 hrs 
(Fig 1B). Similar increases in pSTAT3 and pLck levels 
following SSG were detected (Fig 1B) whereas increases 
of pSlp76 were evident at later time points (Fig 1B). A 
prolonged impact up to day 8 was apparent for pSTAT1, 
pLck and pSlp76 following a single dose of SSG on day 
1 (Fig 1B, comparing lane 1 and 7). However, there was 
no obvious augmentation of IFN-alpha-induced pSTAT1 
or pSTAT3 by SSG (Fig 1B and E) although pLck levels 
were markedly higher following SSG/IFN-alpha co-
treatment (Fig 1E). The levels of pZap70 and pLAT were 
undetectable under the experimental conditions (data not 
shown). 

ISG product induction

To determine whether SSG augmented expression 
of RNA of ISGs, 4 patients were assessed for changes in 
STAT1, IRF7, XAF1, and G1P2 at 24 hrs after SSG at 800 
or 1200 mg/m2, IFN-alpha2b, or the combination. These 
confirmed expected induction at 24 hours after IFN-
alpha2b on day 9 but no consistent broad ISG increase 
after the combination (Fig 2). RNA samples from three 
other patients treated with SSG at 1200 mg/m2 were 
assessed after 4 hours each treatment identified increases 
in STAT1, IRF7, XAF1, G1P2, TRAIL, CXCL10, and 
AIM2 after IFN-alpha2 alone but with no differing results 
to suggest general broad potentiation of gene expression by 
SSG with IFN-alpha2 (data not shown). RNA expression 
levels of a panel of ~ 50 genes with immune modulatory 
potential, whose level might be affected by SSG or IFN-
alpha2b were also assessed with no evidence of general 
potentiation (Supplemental Table 1). 

To assess protein product change of ISGs, 7 patients 
treated at SSG 800 mg/m2 had representative ISG proteins, 
quantitated in serum by ELISA prior to treatment and 24 
hours after each treatment. Beta2-microglobulin, TRAIL, 
CCL8, and CXCL11 all had expected increases 24 hours 
after IFN-alpha2 with return to near baseline after two 
days off and prior to SSG but no potentiation after the 
latter combined with IFN-alpha2b (Fig 3). Other proteins 
products of potentially modified gene expression assessed 
in serum after each treatment included IP-10 and IL-10; 
no consistent change was identified. 

Antimony levels as a measure of achieved serum 
concentration of SSG, when measured 30 and 60 
minutes after infusion at 800 mg/m2, exceeded 20 mcg/
ml in 5/5 patients. We had identified this as a desired 

Figure 2: Peripheral transcripts levels of selective ISGs in patients. Peripheral blood samples were collected pre- and post-
treatments from 4 patients as indicated (A). The relative levels (fold change) of transcripts for STAT1, IRF-7, XAF1 and GIP2 were 
quantified by quantitative RT-PCR (B-E). Each symbol in panel B-E indicates a different patient.



Oncotarget 2011; 2:   1155 - 11641159www.impactjournals.com/oncotarget

target concentration based upon complete inhibition of 
recombinant SHP-1 (100%)[12, 15]. 

Treatment outcomes

No patient had objective regression of disease. The 
median time on trial was 2.3 months (range 10-281d). 
Although possibly influenced by prior treatment, patients 
receiving the chemotherapy regimen in addition to SSG 
and IFN-alpha2b were on study longer (median 81d) 
than those on only SSG and IFN-alpha2b (median 53d, 
p = 0.002 by Wilcoxon rank sum test). Of these patients 
with metastatic solid tumors, alive at 1y were 17/40 
(43%) patients with 8/40 (20%) patients alive for >2 years 
after initiation of investigational treatment. The patients 
with > 2-year survival included six with melanoma, 
one with a gastrointestinal stromal tumor and one with 
hepatic angiosarcoma. All entered patients have now had 
treatment discontinued. 

DISCUSSION

SSG, a drug effective for chronic leishmaniasis [11], 
was a multi-PTPs inhibitor and augmented anti-cancer 
activity of IFN-alpha2b in mouse models [11-14]. Since it 
is selectively toxic to intracellular bur not free-living forms 
of the parasite [27-30] and intracellular survival of the 
pathogen in macrophages involves attenuation of cytokine 
signaling through PTPs [31], inhibition of PTPases may 
also provide an explanation for its antiparasitic activity. 
IFN-alpha2b-induced ISGF3 ISRE complex formation 
may be negatively regulated by PTPs. In support, SSG 
augmented IFN-alpha2b-induced ISGF3 ISRE complex 
formation in melanoma cells [14], consistent with an 
inhibitory action for PTPs. Additional evidence in 
support of the enhanced IFN-alpha2b signaling through 

the mechanism of PTP inhibition by SSG was derived 
from a cancer cell line that has defective intracellular 
IFN signaling and failed to respond to the combination of 
SSG and IFN-α2b[14, 32]. Following a 3-week course of 
IFN-α2b (5 x 105 U/daily subcutaneously) alone, partial 
(~50%) growth inhibition of WM9 human melanoma 
tumors in nude mice resulted [14]. When combined with 
SSG (12 mg/day subcutaneously, IFN-alpha resulted in 
tumor regression and complete eradication of the tumors 
by the third week of study with long term tolerance for 
more than 10 weeks [14]. 

We sought to establish clinical safety of SSG alone 
and in combination with IFN-alpha2b and to identify 
evidence of SHP-1 inhibition. Forty patients with Stage IV 
metastatic malignancies were treated on the two protocols 
of Phase I design to identify toleration of doses of the 
investigational agent SSG escalated from 200-1200 mg/
m2 with either a fixed dose IFN-alpha2b or in combination 
with fixed doses of IFN-alpha2b, dacarbazine, vincristine, 
and cisplatin. Of adverse events expected from previous 
investigations with SSG (hypokalemia, increased 
amylase, and increased lipase), only increased lipase and 
hypokalemia occurred in a substantial number of patients 
(grade 3 or 4 elevations in 22.5 and 7.5% of patients 
respectively). The asymptomatic, reversible lipase 
elevations were dose related (p = 0.04). Many of the grade 
3 or 4 adverse events that did occur may have been due 
to progressive disease or the other drugs utilized rather 
than the investigational agent SSG. With appropriate 
assessment for adverse events, future investigations 
might consider utilizing doses of 1200 mg/m2 of SSG 
intravenously for up to 10d in combination with IFN-
alpha2b with or without chemotherapy. Similar to our 
findings of acceptable tolerance of SSG in combination 
with IFN-alpha2b in cancer patients were findings in 
a concomitant study of similar design [33]. Both trials 
found that Phase II investigation of SSG could safely 

Figure 3: Peripheral protein levels of selective ISGs in patients. Peripheral blood samples were collected at time points pre- and 
post-treatments from patients as indicated (A). The relative sera protein levels (ratio) of Beta2 microglobulin, TRAIL, CXCL11 and CCL8 
were quantified by ELISA (B-E). Each symbol in panel B-E indicates a different patient.
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utilize doses > 800 and potentially 1200 mg/m2 for up to 
10d in combination with IFN-alpha2b and, based upon 
our results, with addition of chemotherapy. Thus clinical 
use of a PTP inhibitor to potentiate other anti-tumor 
modalities is feasible. 

IFN-alpha2 is established for treatment of 
hepatitis C virus, melanoma, and other malignancies 
[34]. IFNs have potent and pleiotropic gene regulatory 
effects in melanoma, antitumor activity for syngeneic 
murine melanomas, human melanoma xenografts, and 
effectiveness in patients with resected primaries at high 
risk for recurrence [34, 35]. Identifying and dissecting the 
relative role of the genes induced by IFNs that modulate 
pleiotropic effects of proteins on the tumor cell surface, 
alter levels of receptors for other cytokines, and activities 
of enzymes and cytokines that modulate cellular growth, 
function, and apoptosis, remains under investigation for 
targeting anti-tumor effects [36]. RNA expression of 
most ISGs did not seem to be potentiated by SSG but 
augmentation of selective ISGs may result as suggested 
by the heightened levels of XAF1 and GIP1 (Fig 2). This 
would need further confirmation and, if verified in larger 
studies, could be of specific ISGs for defining effects of 
SHP-1 inhibition.

SHP-1 is a critical negative regulator in anti-tumor 
immune cells that include T cells [37], NK cells [38], 
dendrocytes and macrophages [39]. Importantly, the PTP 
controls T cell activation [40] by reducing the sensitivity of 
the T cell receptor (TCR) to antigen [41, 42] and terminates 
TCR signals by dephosphorylating and inactivating 
essential components of TCR signaling cascade (e.g., Lck, 
Zap70 and Slp76) [43]. In NK cells, SHP-1 is coupled to 
inhibitory receptors for MHC class I antigen to prevent 
NK cell activation [44]. SSG was shown by our laboratory 
to inhibit SHP-1 [12], synergize with IFN-alpha to cure 
melanoma tumors in mice [14], and interact with IL-2 
in anti-tumor action via a T cell-dependent mechanism 
[45]. An independent group demonstrated the capacity of 
SSG in vitro to help reversing T cell anergy among tumor 
infiltrating lymphocytes (TILs) from human melanoma, 
renal cancer and non-small cell lung carcinoma [46]. This 
is of particular interest given the reported suppression of 
TCR signaling and lytic function of CD8+ TIL cells by 
SHP-1 [47].

In this clinical trial, the target serum level of SSG 
for SHP-1 inhibition was exceeded by more than two 
folds. Despite what may have been limitations in assay 
methodologies for detecting labile phosphor-proteins, a 
suggestion that prolonged phosphoryation of T and NK 
cell signaling proteins inhibited by phosphatases may have 
resulted (Fig 1). In the parallel study patients receiving 
the higher doses (≥900 mg/m2) of SSG had a significantly 
lower number of Treg cells and myeloid dendritic cells 
together with a higher percentage of natural killer (NK) 
cells that synthesized perforin and of plasmacytoid 
dendritic cells (pDC) that secreted IFN-gamma in 

response to activation [33]. These findings suggest that in 
humans in addition to mice, SSG can have modulatory 
activity influencing innate and acquired immunity. 

PTPs include enzymes that are oncogenic, tumor 
suppressive or immune regulatory [1, 3, 5, 48-50]. PTPs 
are thus key players in human malignancies and may 
have potential for developing inhibitors as novel cancer 
therapeutics [1, 5, 49-51]. Our data suggested tolerance of 
a SHP-1 inhibitor, SSG, in combination with IFN-alpha2b 
in cancer patients with evidence of immune regulatory 
activity in this study and one undertaken in parallel. 
Clinical inhibitors of SHP PTPs other than SSG have not 
been evaluated. These findings support developing more 
potent and selective PTP inhibitors for cancer treatment. 
Indeed, several small molecule inhibitors for selective 
PTPs, more potent than SSG, have been identified in recent 
studies and have had significant anti-tumor activities in 
pre-clinical models [52, 53]. Further development and 
evaluations of other PTPs inhibitors are warranted and 
have promise as targeted therapeutics for effective and 
safe cancer treatments. 

PATIENTS AND METHODS

Inclusion and exclusion criteria

All patients met the following eligibility criteria: 
histological diagnosis of metastatic malignancy, 
measurable disease as defined by the NCI Response 
Evaluation Criteria in Solid Tumors (RECIST) guidelines, 
performance status (ECOG) of 0-2, recovered > 3 weeks 
from the any radiation therapy, not have received any 
adjuvant or metastatic disease IFN-alpha2 ≤ 4 months 
prior, no other established treatment options, and no major 
surgery within 28 days, together with granulocyte count ≥ 
1.5 x 109/L, platelets ≥ 100 x 109/L, creatinine <1.0 x upper 
limit normal (ULN), bilirubin<1.5 x ULN, AST <1.5 x 
ULN, and ALT <1.5 x ULN, and must have provided 
written informed consent as to the investigative nature 
of treatment in accordance with institutional and federal 
guidelines. Excluded were patients with uncontrolled 
CNS metastases in the prior 3 months, chronic infections, 
history of arrhythmia with baseline ECG abnormalities 
suggestive of conduction delay, i.e. 10 or greater atrio-
ventricular block complete or incomplete (QRS > 120 
ms) bundle branch block, or suggestive of repolarization 
abnormalities, i.e. QTc > 0.48 sec, congestive heart failure, 
pregnant or lactating women, fertile women or men 
unless surgically sterile or using effective contraception, 
evidence of HIV or HBsAg, organ allografts, high dose 
glucocorticoids, age < 18, or history of severe psychiatric 
disorders. 
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Treatment plan

Cohorts of patients were enrolled at dose levels of 
SSG of 200, 400, 800, and 1200 mg/m2/day on days 1-5 
and 8-12 and IFN-alpha2b alone at a dose of 3 MU/m2 

subcutaneously daily for 14d. The starting dose of SSG 
was chosen to be less than that used for daily treatment 
of visceral leishmaniasis (800 mg/m2/day) and the IFN-
alpha2b dose to be substantially less than the maximally 
tolerated. To enable pharmacodynamic assessments of 
each agent alone, schedule and dose initiation was with a 
single administration of SSG on the first day, IFN-alpha2b 
beginning a week later for 5d, and the combination 
beginning on day 15 for two weeks. SSG dose was 
escalated with successive cohorts but not escalated 
within cohorts. Treatment for two weeks continued at 
28d intervals until disease progression or dose limiting 
toxicity (DLT) occurred. 

Both trials used a standard 3+3 dose escalation 
design to determine the maximal tolerated dose (MTD) 
of SSG, with escalation being based on the number of 
dose-limiting toxicities observed (grade >3 treatment-
related adverse event by CTCAE 3.0 criteria that persisted 
despite medical treatment/prophylaxis, or grade 2 
cardiovascular arrhythmia in the absence of hypokalemia 
or hypomagnesemia). That is, cohorts of three patients 
were initially treated at a particular SSG dose. If none of 
these patients experienced DLT, SSG was to be escalated 
to the next higher dose level. If two or more patients 
experienced DLT, the trial was to be stopped and the 
next lower dose defined as the MTD. If one patient had 
DLT, three additional patients were to be treated at that 
dose, with escalation occurring if no additional DLT 
was observed. Patients were assessed for adverse events 
weekly for 4 weeks, biweekly for 2 weeks, and then 
monthly. Measureable disease was assessed at each visit 
and by imaging every 2 months. Adverse events were 
measured and graded according to Common Terminology 
Criteria for Adverse Events (CTCAE) (NIH 2003). 

After validation of lack of unexpected adverse events 
in the initial patients, a second protocol in combination 
with chemotherapy was initiated with parallel eligibility 
criteria (eligibility for Stage IV patients without 
measureable disease for up to four cycles of treatment 
added). This utilized dose levels of SSG of 200, 400, 800, 
and 1200 mg/m2/day for four days with IFN-alpha2b at a 
dose of 3 MU/m2 subcutaneously daily for 4d. Again for 
pharmacodynamic assessments, SSG and IFN-alpha2b 
alone and then in combination were initiated as a single 
administrations of SSG on the first day, beginning a week 
later 3 MU/m2 for 5d, and a chemotherapy combination 
initiated beginning a week thereafter for 2d with cisplatin 
at a dose of 30mg/M2 IV, vinblastine 2.0mg/ M2 IV, and 

dacarbazine 350mg/m2 IV with each chemotherapy dose 
given daily. Cycles were repeated every 28d. 

The studies were conducted under IND # 68881 from 
the FDA with the clinical grade SSG for investigational 
study in the US provided by Albert David Inc, Calcutta 
and with commercially available IFN-alpha2b from 
Schering Merck. The protocols (IRB 2Y06 and IRB3Y06) 
were conducted with approval from and under the 
auspices of the Investigational Review Board of the Case 
Comprehensive Cancer Center and were registered as 
CT.gov NCT00311558 and NCT00498979 respectively. 

ELISA assays for ISG products

Beta2-microglobulin (R&D Systems, Minneapolis, 
MN) was quantitated in patients’ sera using a competitive 
binding enzyme immunoassay. TRAIL, CXCL11, 
and CCL8 (MCP-2) (RayBiotech, Raitan, NJ) were 
quantitated in frozen stored patients’ sera using individual 
quantitative sandwich enzyme immunoassays for batched 
samples. The lower limits of sensitivity for the ELISA 
assays ranged from 0.2 ug/ml for Beta2 microglobulin, 
2.9 pg/ml for TRAIL, 14 pg/ml for CXCL11 and 1.5 pg/
ml for CCL8. 

RNA collection and analyses

Blood was collected in PAX tubes (PreAnalytiX 
Inc., Franklin Lakes, NJ) at pre treatment and day 8, 
and RNA was prepared using the PreAnalytiX Blood 
RNA kit according to manufacturer’s instructions. 
cDNA was prepared using the SuperScript III First-
Strand Synthesis System (Invitrogen Inc. Carlsbad, CA) 
according to instructions of the manufacturer. Selected 
gene expression was assessed by iTaq SYBR (BioRad 
and ABI7900, cycler [54]. Primer sequences were G1P2: 
CAAATGCGAC GAACCTCTGA, CCGCTCACTT 
GCTGCTTCA, XAF1: CCTAGAGGAG ATAAAGCAGC 
CTATGA, AAGCTAACCA CCGGCATTTCT, IRF7: 
TCCCCACGCT ATACCATCTA CCT, ACAGCCAGGG 
TTCCAGCTT and STAT1: GTGGAAAGAC 
AGCCCTGCAT, ACTGGACCCC TGTCTTCAAG 
AC. GAPH was used to normalize CT values and fold 
expression was calculated based on pretreatment CT 
values using the ddCT formula. 

Antimony quantification

Antimony, a constituent of SSG [55], has been used 
to assess SSG serum concentration. It was quantitated by 
ARUP at the University of Utah by inductively coupled 
plasma/mass spectrometry, reference range 0-6 microg/L.
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Phospho-proteins in peripheral blood

Heparinized peripheral blood samples were obtained 
by vein-puncture per clinical trial protocols approved 
by the Institutional Review Board (IRB) of Cleveland 
Clinic. For evaluation of phospho-proteins, the samples 
were diluted (5x) with cold hypotonic solution (10 mM 
Tris, pH 7.4; 10 mM NaCl; 0.2 mM Na3VO4) to lyse RBC 
and washed 2 x with the solution. The WBC pellets were 
lysed in cold lysis buffer (1% NP40, 50 mM Tris, pH 7.4, 
150 mM NaCl, 20 mM NaF, 0.2 mM Na3VO4 and 1 mM 
Na3MO4) containing a cocktail of proteinase inhibitors 
(Sigma, 1 tablet/10 ml). The lysates were cleared by 
centrifuging (14,000 rpm, 10 min) in a microfuge at 
40C to remove insoluble parts, mixed with equal volume 
of 2 x SDS-PAGE sample buffer, boiled for 5 min and 
analyzed by SDS-PAGE/Western blotting. Relative 
intensities of phosphotyrosine bands were quantified 
through densitometry analysis. Antibodies against pStat1 
(New England Biolab), pStat3 (Santa Cruz Biotech), 
pLck (Cell Signaling), pZap70 (BD Biosciences), pSlp76 
(BD Biosciences) and pLat (BD Biosciences) were from 
commercial sources
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