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ABSTRACT

Distinct metabolic transformation is essential for cancer cells to sustain a high 
rate of proliferation and resist cell death signals. Such a metabolic transformation 
results in unique cellular metabolic phenotypes that are often reflected by 
distinct metabolite signatures in tumor tissues as well as circulating blood. Using 
a metabolomics platform, we find that breast cancer is associated with significantly 
(p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 
35 breast cancer patients and 35 controls. The result was validated with 103 plasma 
samples and 183 serum samples of two groups of primary breast cancer patients. Such 
a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity 
in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was 
a significantly higher level of aspartate in breast cancer tissues (n = 20) than in 
adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell 
lines, suggesting that the depleted level of aspartate in blood of breast cancer patients 
is due to increased tumor aspartate utilization. Together, these findings suggest that 
lowed circulating aspartate is a key metabolic feature of human breast cancer.

INTRODUCTION

Breast cancer remains to be one of the most 
commonly diagnosed and death-related cancers in women 
in the United States, resulting in an estimated 40,730 new 
deaths in 2015 [1–3]. The long-term survival of women 
with breast cancer depends on the stage of disease at 
the time of diagnosis: the 5-year survival rate is 99% 
for localized disease, 85% for regional stage, and 25% 
for distant-stage tumor [2]. Attempts to reduce breast 
cancer deaths have therefore relied greatly on early 
cancer detection and treatment. The most widely used 
screening method for breast cancer is mammography, 

with the sensitivity of the method ranging from 54% to 
77% [4]. Despite the fact that image resolution continues 
to improve through the use of digital technology, tumors 
less than 5 mm are difficult to detect [5]. Other imaging 
methods such as thermography and magnetic resonance 
imaging are frequently used, but equally insensitive [6]. 
As the need for a screening test that would ideally be 
noninvasive, highly sensitive and specific continues to 
increase, considerable efforts have been devoted to search 
for biomarkers for early diagnosis of breast cancer.

Metabolomics has recently become a new driving 
force in cancer biology research shown some promise 
in identifying key metabolic pathways in various types 
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of cancers [7–13]. Recent metabolomic studies of breast 
cancer have provided important metabolic signatures in 
serum, plasma [14–17], and tissue [18] that differentiate 
breast cancer from healthy controls. However, the 
significantly differential pathways and metabolites 
identified are not consistent among these studies, primarily 
due to the inter-individual variability of patients and the 
different analytical and clinical protocols used in various 
studies [16, 19, 20]. Moreover, none of the previous 
studies have evaluated selectivity of panels for breast 
cancer versus other malignancies.

Here, we report a metabolomics study aimed 
to identify distinct metabolite signatures of breast 
cancer patients. Plasma and sera samples from breast 
cancer patients and healthy controls were profiled using 
liquid chromatography time of flight mass spectrometry 
(LC-TOFMS) and gas chromatography-time of flight mass 
spectrometry (GC-TOFMS) coupled with bioinformatics 
tools. The initial training study was conducted with the use 
of 35 primary breast cancer plasma samples and 35 control 
samples, and validated with 103 primary breast cancer 
plasma samples and 183 primary breast cancer serum 
samples. Breast cancer tissue specimens and cell lines 
were also used to support the unique metabolic feature 
identified in the study.

RESULTS

Plasma metabolite profiling of breast cancer 
patients

Supplementary Figure S1 schematically shows the 
design and the data flow for discovery and validation 
of important metabolic signatures of breast cancer. 
A total of 225 metabolites were annotated from the 
detected spectral features of samples from Training 
Set (Table 1 and Supplementary Table S1), of which 
102 metabolites (45.3%, 69 metabolites from GC-MS 
and 33, from LC-MS) were validated with reference 
standards while the others were annotated by comparing 
with the available databases including the NIST 
library and Human Metabolome Database (HMDB) 
(Supplementary Table S2). PCA was performed to assess 
the separation tendency between groups based on the 
225 annotated metabolites in the Training Set samples 
including 35 breast cancer patients and 35 age-matched 
(but not ethnicity-matched) healthy controls from City of 
Hope National Medical Center (City of Hope). As shown 
in Supplementary Figure S2, there was a separation 
between healthy controls and breast cancer. Further, 
an OPLS-DA model with one predictive component 
and two orthogonal component (R2X(cum) = 0.140, 
R2Y(cum) = 0.861, Q2Y(cum) = 0.717) was constructed 
with satisfactory discriminating ability (Figure 1A). To 
account for metabolite variation due to age and racial 

differences between study participants, age and race were 
included as independent variables in the OPLS-DA model. 
A permutation test was performed 200 times on the OPLS-
DA model including correlation coefficient between the 
original Y and the permuted Y versus the cumulative R2 
and Q2, with the regression line shown in Supplementary 
Figure S3. The intercept (R2 and Q2 when the correlation 
coefficient is zero), which represents the extent of 
overfitting, is rather small (R2 = 0.51 and Q2 = 0.19) and 
the model is satisfactory. The performance of this OPLS-
DA model was further tested in another group of 103 
breast cancer patients and 41 healthy controls (Validation 
Set 1) and all test samples were correctly classified by the 
OPLS-DA model established with the 70 training samples. 
Moreover, the OPLS-DA model of 225 metabolites 
showed distinct metabolite profiles of breast cancer 
patients at Stages I - II and the patients at stages III - IV, 
from the healthy controls, with satisfactory modeling and 
predictive abilities using one predictive component and 
three orthogonal components (Supplementary Figure S4).

Using the VIP values (VIP > 1) derived from 
the OPLS-DA model and the p values (p < 0.05) from 
the Mann-Whitney test , a total of 31 metabolites were 
selected as differential variables between breast cancer 
patients and controls from the Training Set with detailed 
statistics of the area under the ROC curves (AUC), and 
the corresponding sensitivity and specificity (Table 2). 
Participants’ age and race, with VIP values of 0.98 and 
0.33, respectively, did not pass the VIP threshold.

Using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database, key metabolic pathways 
dysregulated in breast cancer patients were identified as 
the TCA cycle, amino acid metabolism, lipid metabolism 
and nucleotide metabolism (Table 2). Among these, the 
amino acid metabolic pathway had the most differential 
metabolites and showed a profound change.

In addition case vs. control comparisons, breast 
cancer cases were compared between early (I-II) and late 
(III-IV) stage of the disease, with a list of differential 
metabolites given in Supplementary Table S3.

Circulating metabolite signatures of breast 
cancer

Among the above 31 candidate metabolites, aspartate 
is the most significant differential metabolite that markedly 
decreased in breast cancer samples with a fold change of 
0.34 (p = 6.27E-13) in the Training Set (Figure 1C and 1D). 
The ROC curve analysis revealed that aspartate has the 
highest value of the area under the curve (AUC) of 1.000, 
and specificity and sensitivity (Table 2), which showed 
excellent discriminating power in distinguishing breast 
cancer cases from healthy controls. A logistic regression 
analysis of the 31 metabolites conducted using the Training 
Set also showed that aspartate had the strongest association 
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with a decrease in the risk of breast cancer in Training 
set (p = 5.3E-05). The box plot established with plasma 
aspartate levels (Supplementary Figure S5) showed that 
breast cancer patients at all four stages had a significantly 
lower aspartate abundance than the healthy controls.

Validation of aspartate with different patient 
cohorts

The 31 candidate metabolites were further tested for 
differences and cancer risk association using Validation 
sets 1, 2 and 3. Five of these 31 metabolites, aspartate, 

glycerolphosphate, 5-oxoproline, arachidonate, and 
isoleucine were all significantly decreased in breast 
cancer patients in Validation Set 1, 2 and 3, among which 
aspartate was the most significant (Table 3). A logistic 
regression analysis of the 31 metabolites was conducted 
using the three Validation Sets and showed that aspartate 
had the strongest association with a decrease in the risk 
of breast cancer in Validation set 1 (p = 1.7E-02, odds 
ratio: 0.77; 95% confidence interval (CI): 0.625 to 0.955), 
Validation Set 2 (p = 2.0E-03, odds ratio: 0.163; 95% 
CI: 0.053 to 0.501), and Validation Set 3 (p = 2.5E-05, 
odds ratio: 0.895; 95% CI: 0.850 to 0.943).

Figure 1: Metabolite profiles of breast cancer patients and healthy controls are significantly different. A. The scores plot 
of the OPLS-DA model of the training group. The OPLS-DA model was constructed using the plasma data from 35 patients (red dots) and 
35 healthy controls (blue dots). B. The OPLS-DA prediction model of breast cancer. An OPLS-DA model was constructed using the plasma 
data from 35 breast cancer patients (red dots) and 35 healthy controls (blue dots) (the ‘‘training set”); this model was then used to predict 
breast cancer of a group of 144 samples including 103 breast cancer patients (green dots) and 41 healthy controls (purple dots) that were 
not used in the construction of the model (Validation Set 1, the ‘‘testing set”). C. Bar plot of metabolite differences between breast cancer 
patients (n = 35 in the Training Set) and healthy controls (n = 35 in the Training Set). A fold change (FC) value was calculated for each 
metabolite by taking the ratio of the mean intensities in breast cancer patients and the healthy controls. Each bar representing an FC value 
was colored to indicate its corresponding p -value and thereby specify the statistical significance in all subjects (see color scale). D. Box 
plot of aspartate in distinguishing breast cancer (n = 35) from healthy control (n = 35).
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In order to explore the potential of aspartate as 
a key differential metabolite, blood samples from the 
Training Set and Validation Sets 1, 2 and 3 were subjected 
to quantitative metabolic analysis. Bar plots constructed 
using the aspartate levels from plasma (Validation 
Set 1, Figure 2A) and sera (Validation Set 2 and 3, 
Supplementary Figure S6 and S7), show a marked decrease 
in cancer patients. ROC analysis reveals that aspartate has 
the highest accuracy (AUC = 1.000) with sensitivity of 
100% and specificity of 100% (Table 4) at a cutoff value 
of 1.27 μg/mL using the quantitative data of aspartate 
in the Training set. The parameters estimated from the 
Training set were also used to predict the probability of 

being diagnosed breast cancer patients for the independent 
Validation Sets. In the ROC analysis (Figure 2B), the AUC 
of aspartate in plasma samples from Validation set 1 was 
0.998 (95% CI: 0.993–1.000), with a sensitivity of 100% 
and a specificity of 98.7%. The AUC of serum aspartate 
from Validation set 2 was 0.993 (95% CI: 0.984–1.000), 
with a sensitivity of 100% and a specificity of 94.9%, 
while for the serum samples from Shanghai (validation 
set 3), the AUC was 0.996 (95% CI: 0.990–1.000), with 
a sensitivity of 100% and a specificity of 97.5%. Notably, 
the ability of the aspartate to differentiate between early 
stage breast cancer patients and healthy controls is also 
significant (Figure 2C), with an overall accuracy of 99% 

Figure 2: Lowered circulating aspartate is a metabolic feature of human breast cancer. A. Distributions of aspartate 
concentration in different samples. P-value over a group denotes statistical significance of differences between each group member and 
healthy controls. B. The ROC curves in the breast cancer samples from the Validation Set 1, Validation set 2, and Validation Set 3 using 
aspartate. C. The ROC curves in the breast cancer samples of Stage I+II from the Validation Set 1, Validation set 2, and Validation Set 
3 using aspartate. D. Plasma aspartate levels in patients at Stages I and II (n = 69) are significantly different from the patients at Stages III 
and IV (n = 69) from the Training Set and validation Set 1. E. ROC curves in the breast cancer samples (n= 138) from the Training Set and 
validation Set 1 and in the gastric (n = 114) and colorectal (n = 101) cancer samples using aspartate.
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for early-stage tumors. Moreover, the levels of plasma 
aspartate are significantly different between patients at 
Stages I-II and at Stages III-IV (p = 7.90E-04, Figure 2D).

Selectivity of aspartate for breast cancer versus 
other cancers

Aspartate was used to classify a set of cases with 
other two common cancers, colorectal (n = 101, Test Set 1) 
and gastric (n = 114, Test Set 2). Aspartate correctly 
differentiated all of colorectal cancers and gastric cancers 
from the breast cancer (Figure 2E).

Aspartate in breast cancer tissue samples and 
breast cancer cell lines

To determine whether the aspartate decrease 
in blood of breast cancer patients has any biological 
relevance, we profiled 20 pairs of breast tumor tissue 
and the adjacent non-tumor tissue (Sample Set 1) using 
GC-TOFMS and LC-TOFMS. Aspartate was found 
elevated by 1.92 fold in the tumor tissue with a p value 
of 7.4E-06 (Figure 3A), and the levels of aspartate-related 
metabolites, such as asparagine and several nucleosides 
and nucleobases including uridine, uracil, guanosine, 
orotidine, dihydrouracil, hypoxanthine, and 8-hydroxy-
deoxyguanosine, were all elevated in breast tumor tissues 
(Supplementary Table S4).

We also measured aspartate levels in breast cancer 
cell lines of MCF-7 (n = 5) and the control cell line of 
MCF-10A (n = 5). Significantly increased aspartate 
concentration was found in the MCF-7 cells relative to the 
MCF-10A cells (p = 1.12E-05, Figure 3B). Additionally, 
the AST activity in the MCF-7 cells was lower than in the 
MCF-10A cells (n = 3, p = 1.00E- 05, Figure 3C).

DISCUSSION

Breast cancer is the most common cancer in 
women. While genetic alterations have been extensively 

characterized in breast cancer, the changes in metabolism 
that occur downstream from genomic and proteomic 
alterations have not been characterized in detail to date. 
Since blood is in contact with virtually all tissues in the 
human body and is considered to reflect in a dynamic way 
the pathophysiological status, serum/plasma metabolomic 
changes are of particular importance with diagnostic value 
for early cancer detection [21].

We used combined LC-TOFMS and GC-TOFMS to 
profile serum, plasma and breast cancer tissue metabolites 
[12, 22], providing an unprecedented number of identified 
metabolites for explaining the biological variations 
associated with pathophysiological conditions [23] and 
obtaining cross-validated results as well. The current study 
revealed a lowered blood (plasma or serum) aspartate level 
in breast cancer patients, and an increased level in breast 
tumor tissues compared to adjacent non-tumor tissues and 
in breast cancer cells (MCF-7) as compared to MCF-10A 
cells. Since the characteristic metabolite expressions may 
be associated with age and race, we performed logistic 
regression analysis after adjustment of age and race and 
the aspartate was sensitive at detecting breast cancer 
that were adjusted for age and race. We also compared 
the levels of aspartate among breast cancer patients with 
different races, and found that aspartate is at the similar 
level among the groups.

Two of the most commonly diagnosed cancers, gastric 
and colorectal cancers, were used to evaluate the selectivity 
of aspartate for breast cancer. Aspartate was highly selective 
for breast cancer when compared with gastric and colorectal 
cancer, suggesting that aspartate can be breast cancer 
specific. Due to the fact that not all the gastric and colorectal 
cancer patients are gender- and age-matched, we carefully 
selected 35 age-matched female patients with gastric cancer 
and colorectal cancer, respectively, to test the specificity of 
aspartate again. As a result, aspartate was able to correctly 
differentiate all of the colorectal cancers and gastric cancers 
from the breast cancer (Supplementary Figure S8).

Aspartate is a non-essential amino acid, produced 
from oxaloacetate by a transamination process. It 

Figure 3: Analysis of aspartate in breast cancer tissue and adjacent non-tumor tissue and in MCF-7 and MCF-10A 
cells. A. Aspartate level in breast cancer tissue and adjacent non-tumor tissue (mean ± SEM, n = 20). B. Aspartate level in MCF-7 and MCF-10A 
cells (mean ± SEM, n = 5). C. Aspartate aminotransferase (AST) activity in MCF-7 cells was lower than in MCF-10A cells (mean ± SEM, n = 3).
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participates in urea cycle to facilitate the removal of 
ammonia, functions as a substrate of de novo biosynthesis 
of pyrimidine, plays a role in translocating nicotinamide 
adenine dinucleotide (NADH) (produced from glycolysis) 
into mitochondria across inner mitochondria membrane 
for oxidative phosphorylation by aspartate-malate shuttle, 
and can be converted to alanine and then undergoes 
gluconeogenesis. The de novo pyrimidine biosynthesis 
activity was found elevated by 4.4 folds in the MCF-7 
cells compared to that in the MCF-10A cells [24], which 
may account for the higher aspartate levels in the MCF-7 
cells. The high rate of tumor growth requires increased 
biosynthesis of nucleic acids [25], and thus, increased 
utilization of aspartate by tumor cells, leading to the 
decreased level of aspartate and oxaloacetate in blood. 
It was consistent with the results obtained by Proenza 
et al. that the plasma, blood and blood cell aspartate 
were all decreased in 16 female breast cancer patients 
[19]. However, our results were inconsistent with several 
other reports. It was reported that the serum aspartate 
level was increased in breast cancer patients (n = 41) 
without significance compared to healthy controls (n = 9) 
(FC = 1.50) [16]. The plasma total amino acids, essential 
amino acids, branched chain amino acids, aromatic 
amino acids and gluconeogenic amino acids were also 
increased in breast cancer patients (n = 22) compared to 
healthy controls (n = 6) [20]. However, all these results 
were obtained with small number of participants without 
validation.

The high aspartate level in breast cancer cell 
line and low level in human breast epithelial cell line 
demonstrate its close association with the down-
regulated AST activity (Figure 3C), an enzyme involved 
in the transfer of an amino group from aspartate to 
α-ketoglutarate to produce oxaloacetate and glutamate. 
AST, essential for the transformation and growth of 
mammary epithelial cells, was proposed as a valid target 
for the anti-breast cancer agents [26], supporting the 
biological relevance of aspartate as a metabolic feature 
of breast cancer. In addition to AST, aspartate level is 
regulated by asparagine synthetase, an enzyme that 
generates asparagine from aspartate [27]. It has been 
found that asparagine synthetase was overexpressed 
under glucose-deprived condition in the pancreatic 
cancer cells with a protective capability against apoptosis 
for the cancer cells [27]. It has been observed that 
overexpression of insulin-like growth factor (IGF) 1 and 
2 (an essential regulator of breast cancer development) in 
the MCF-7 breast cancer cells also leads to an increased 
expression of asparagine synthetase [28]. The elevated 
asparagine and decreased aspartate observed in this 
breast cancer metabolomics study may be a result of an 
overexpression of asparagine synthetase.

The metabolite signature obtained in this study 
cannot readily stratify breast cancer patients at each 

stage, although it can differentiate breast cancer patients 
at Stages I and II from the patients at Stages III and 
IV. The heterogenic background of breast cancer such 
as estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor (HER2), 
didn’t seem to complicate the metabolite profile of breast 
cancer. It is likely that different molecular subtypes 
may share a common metabolite signature, resulting 
in a unique metabolic feature of human breast cancer 
regardless of its heterogeneity. The fact that the aspartate 
offered high accuracy in a heterogeneous validation set 
that contained different molecular subtypes underscores 
the potential utility of this metabolic feature of breast 
cancer.

In summary, we used mass spectrometry-based 
metabolomics approach to characterize the serum and 
plasma metabolite signature of breast cancer patients. 
The results reveal a potentially important metabolic 
feature of breast cancer characterized by a depleted 
circulating aspartate and elevated aspartate levels in 
tumor tissue and cells.

MATERIALS AND METHODS

Patient populations

The population used in this study comprised 
321 breast cancer patients, 114 gastric cancer patients, 
101 colorectal cancer patients and 177 healthy controls 
(Table 1) and were obtained from multiple sources 
(Supplementary Table S1). The breast cancer patients 
were newly diagnosed and were not recurrent or on 
any medication prior to sample collection. Patient 
characteristics, staging of disease and other parameters 
are shown in Table 1. Control samples were collected 
from a total of 177 healthy volunteers using the same 
sample collection protocol. Supplementary Figure S1 
schematically shows the design and the data flow for 
identifying important metabolic signatures of breast 
cancer.

This study was approved by the institutional review 
boards of Shanghai Jiao Tong University Affiliated Ruijin 
Hospital and City of Hope National Medical Center, and 
all participants signed an informed consent before they 
participated in the study.

Collection and storage of blood serum and 
plasma

Fasting blood samples were collected in the morning 
before breakfast from all the participants. Plasma and 
serum specimens were obtained and placed into clean 
tubes and immediately stored within two hours of 
collection at –80°C until analysis.
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Tissue samples

Twenty pairs of frozen breast cancer tissues of Stage 
I (n = 1), Stage II (n = 10), Stage III (n = 8), and Stage IV 
(n = 1) were purchased from Biochain Institute in CA, 
USA. Each pair of tissues consisted of breast tumor tissue 
and the adjacent non-tumor tissue from the same patient. 
Tissues were collected under an IRB approved protocol 
(Biochain Institute) and tissues used in study did not need 
additional ethical approval.

Metabolite profiling

LC-TOFMS and GC-TOFMS were used for the 
metabolomics profiling of all samples in the study. The 
profiling procedure (sample preparation, metabolite 
separation and detection, metabolomic data preprocessing, 
metabolite annotation, and statistical analysis) was 
performed following our previously published protocols 
with minor modifications [12, 22, 29–33]. Details of 
plasma, serum and tissue sample preparation and LC/GC-
MS analysis are provided in Supplementary Methods.

Results obtained in our study revealed that aspartate 
is the most significant key differential metabolite; we 
then quantified aspartate in all samples using an ultra-
performance liquid chromatography (UPLC) coupled with 
an ACQUITY TQ tandem mass spectrometry (Waters, 
Milford, MA, USA).

Data analysis and statistics

All annotated metabolites from GC-TOFMS and 
LC-TOFMS datasets were combined and exported 
to SIMCA-P+ 12.0 software (Umetrics, Umeå, 
Sweden) for multivariate statistical analysis [22, 34]. 
Principal component analysis (PCA, an unsupervised 
multivariate statistical analysis) and orthogonal 
partial least squares-discriminant analysis (OPLS-DA, 
a supervised multivariate analysis for identification of 
key variances between different datasets) [35] were 
performed to discriminate between the breast cancer 
patients and healthy controls. Using the training 
dataset and the threshold of variable importance in 
the projection (VIP, value >1) from the 7-fold cross-
validated OPLS-DA model and the p-value (<0.05) from 
Mann-Whitney test, a panel of metabolites responsible 
for the difference in the metabolic profiles of cancer 
cases and controls were obtained. These differential 
metabolites were then evaluated in Validation sets 
1–3 to test metabolite differences between cancer 
cases and controls, and logistic regression adjusted for 
participants’ race and age at blood draw to examine 
the association between metabolites and breast cancer 
risk. The corresponding fold change was calculated 
to show how these selected differential metabolites 

varied in the cancer samples relative to the healthy 
controls. In addition, receiver operating characteristic 
(ROC) curve analysis was conducted using the SPSS 
software (IBM SPSS Statistics 19, USA) [11, 36]. This 
analysis was performed to identify the optimal threshold 
values for key differential metabolites. Bar plots of 
the metabolites were constructed using the R software 
package (http://www.r-project.org). We regarded 
p values of < 0.05 as significant.

Aspartate levels in MCF-10A and MCF-7 cells

MCF-7 breast adenocarcinoma cells and MCF-10A 
non-tumorigenic epithelial cells used as the control  cell 
line were obtained from the American Type Culture 
Collection (ATCC) in VA, USA and had been 
authenticated by STR profiling. The aspartate levels in 
the MCF-7 and MCF-10A were quantitatively measured 
by UPLC coupled with an ACQUITY TQ tandem mass 
spectrometry (Waters, Milford, MA). Briefly, cell samples 
were homogenized in a bullet blender (Next Advance) 
in 500 μl mixture of chloroform, methanol and water 
(1:2.5:1, v/v/v) containing 13C-labeled aspartate used as 
internal standard. The samples were then centrifuged at 
13,000 rpm for 10 min at 4°C, and a 150-μl aliquot of the 
supernatant was transferred to an LC sampling vial. The 
deposit was re-homogenized with 500 μL of methanol, and 
after centrifuging, a 150-μL aliquot of supernatant was 
added to the same vial for drying prior to reconstitution 
with acetonitrile/H2O (6:4, v/v) to a final volume of 
100 μl. A volume of 10 μL sample extraction was injected 
onto an Atlantis HILIC silica column (50 × 4.6 mm, 
5 μm). The samples were analyzed with mobile phase 
A (10% acetonitrile in water) and mobile phase B (10% 
water in acetonitrile), both containing 10 mM ammonium 
formate and 0.125% formic acid. The flow rate was 
1 mL/min and the column temperature was 40°C. The 
gradients were 0 min, 95% B; 0.05 min, 95% B; 0.4 min, 
90% B; 1.5 min, 90% B; 1.55 min, 35% B; 3.5 min, 
35% B; 3.55 min, 95% B; and 6 min, 95% B. The mass 
spectrometry was operated in the positive electrospray 
mode using a capillary voltage of 3 kV and an extractor 
voltage of 3 V. The source and desolvation temperatures 
were maintained at 120°C and 250°C, respectively. The 
gas flow rates of cone, desolvation and collision were 
set to 60 L/h, 500 L/h and 0.1 mL/min, respectively. 
The multiple reaction monitoring (MRM) transitions for 
aspartate and 13C-labeled aspartate were optimized and 
shown in the Supplementary Table S5. UPLC-MS raw 
data obtained with positive mode were analyzed using 
QuanLynx applications manager version 4.1 (Waters, 
Manchester, UK). The concentrations of metabolites were 
expressed in μg per 106 cells. A Student’s t-test was used 
to investigate differences between the groups in aspartate 
measurement.
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Aspartate aminotransferase activity assay

The enzyme activity of aspartate aminotransferase 
(AST) in the cell samples were measured and analyzed 
using AST activity assay kit (BioVision, Milpitas, CA) 
according to the manufacturer’s instructions.
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