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ABSTRACT

Although clinical features, cytogenetics, and mutations are widely used to 
predict prognosis in patients with acute myeloid leukemia (AML), further refinement 
of risk stratification is necessary for optimal treatment, especially in cytogenetically 
normal (CN) patients. We sought to generate a simple gene expression signature as 
a predictor of clinical outcome through analyzing the mRNA arrays of 158 de novo 
CN AML patients. We compared the gene expression profiles of patients with poor 
response to induction chemotherapy with those who responded well. Forty-six genes 
expressed differentially between the two groups. Among them, expression of 11 genes 
was significantly associated with overall survival (OS) in univariate Cox regression 
analysis in 104 patients who received standard intensive chemotherapy. We integrated 
the z-transformed expression levels of these 11 genes to generate a risk scoring 
system. Higher risk scores were significantly associated with shorter OS (median 
17.0 months vs. not reached, P < 0.001) in ours and another 3 validation cohorts. In 
addition, it was an independent unfavorable prognostic factor by multivariate analysis 
(HR 1.116, 95% CI 1.035~1.204, P = 0.004). In conclusion, we developed a simple 
mRNA expression signature for prognostication in CN-AML patients. This prognostic 
biomarker will help refine the treatment strategies for this group of patients.

INTRODUCTION

“Precision medicine” has become a state-of-the-
art principle in clinical care. As a highly heterogeneous 
disease, acute myeloid leukemia (AML) requires precise 
risk stratification to achieve optimal treatment outcomes 
for the patients. Although several clinical and genetic 
factors have been widely incorporated into clinical 
consideration for choosing treatment regimens, more 

prognostic factors would be welcome as there are still 
factors not yet being sorted out completely. Cytogenetics 
has long been considered the most important prognostic 
factor for AML, however, about one-half of the patients 
are cytogenetically normal (CN); this group of patients 
need further prognostic factors for risk stratification 
[1]. Recently, several genetic mutations with prognostic 
significance, such as internal tandem duplication of FLT3 
(FLT3-ITD) [2–4], NPM1, and CEBPA mutations [5, 6], 
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have partially compensated for the problem. However, 
about 24% CN-AML patients have no detectable mutations 
in these genes [2]. Although the expression levels of genes 
such as BAALC [7], MN1 [8], and ERG [9] provide further 
reference for prognostication in this group of patients, the 
significance of single gene expression remains restrictive 
in the context of a complicated cellular milieu.

DNA microarray technology makes it possible to 
evaluate the global gene expression profiling of cells. 
Studies have shown distinct genetic expression profiles 
in AML with different cytogenetics and gene mutations 
[10–12]. While gene expression signature-derived scoring 
systems bear prognostic values in AML [11, 13–20], it 
is rarely used in clinical practice, mainly because of the 
large gene numbers in those scoring systems, usually 
dozens to hundreds of probes. For example, Shaughnessy 
et al. developed a 70-gene expression scoring system to 
identify patients with shorter progression-free survival 
(PFS) and overall survival (OS) in multiple myeloma [21]. 
Subsequently they simplified the system to 5 genes which 
carried the most discriminatory power of the 70-gene risk 
model with similar predictive values [22].

We realize that a considerable portion of CN-AML 
patients still need reliable parameters for choosing optimal 
treatment strategies. In this study, we developed a simple 
gene expression signature with prognostic significance 
by incorporating limited number of probes through 
comprehensive analysis of the gene expression profiles 
from our CN-AML patients. Using ours as a discovery 
set, we validated our results with three other independent 
CN-AML cohorts, which are available from public 
domains. Furthermore, we explored the possible molecular 
pathways underlying this signature.

RESULTS

Identification of genes with prognostic 
significance

We recruited a total of 351 adult patients (≥15 years 
of age) with newly diagnosed de novo AML from 1995 
to 2011 at the National Taiwan University Hospital 
(NTUH), who had adequate cryopreserved bone marrow 
cells for mRNA array studies. Patients with antecedent 
hematological malignancies or therapy-related AML were 
excluded. We focused on the 158 patients (45.0%) with 
CN-AML. Among these patients, 104 (65.8%) received 
standard intensive chemotherapy. We analyzed the 
array data of the 158 CN-AML patients for global gene 
expression profiles. The expression data were processed 
and normalized to eliminate systematic biases and 
facilitate further statistical analyses. Since this study is a 
retrospective analysis with a group of patients spanning for 
almost 20 years, we aimed to eliminate biases as much as 
possible by using the response to induction chemotherapy 
as a criterion for dividing the patients into two groups, 

one with good response (GR group, 56 patients) who 
achieved continuous complete remission without relapse 
and the other with poor response (PR group, 19 patients) 
who were refractory to the induction chemotherapy. We 
compared gene expression profiles between the two groups 
and identified 46 differentially expressed probes (Student’s 
t-test P value < 0.05 and > 2-fold change). These probes 
corresponded to 43 unique genes. Interestingly, all of the 
46 probes were up-regulated in the PR group. Heatmap 
visualization of these probes were performed using the 
Genesis software (Fig. 1A) [23].

Analysis of functional annotations of 43 genes

In order to dissect the biological functions 
underlying the 43 genes that likely affect chemosensitivity, 
we analyzed their functional annotations using the 
Ingenuity Pathway Analysis (IPA) [24] software. The 
genes were associated with abundant biological functions 
related to leukemia (data available upon request). 
Eight genes (BAALC, CD14, CD34, CD74, DNTT, 
HLA-DRA, IRF8, and MN1) were all associated with 
“leukemia” (P = 1.15 × 10−4), “acute myeloid leukemia” 
(P =  9.37 × 10−3), and “proliferation of myeloid cells” 
(P = 0.044). We further utilized Gene Set Enrichment 
Analysis (GSEA) [25] to verify the results derived from 
IPA. GSEA is an enrichment analysis algorithm that 
features threshold-free input (i.e., global gene profiles). 
It analyzes whether genes sharing a common function 
exhibit a global trend toward up-regulation (or down-
regulation) in a given condition, measured by enrichment 
scores and permutation-based empirical P-values. Notably, 
genes related to the three associated terms (diseases 
and biological functions) obtained from IPA showed 
significant enrichment in the PR/GR differential gene 
expression profiles: the empirical P-values were <0.001 
for functions related to acute myeloid leukemia and 
leukemia, and P = 0.001 for the proliferation of myeloid 
cells (enrichment plots in Fig.  1B–1C and Fig. S1). These 
3 functional categories related genes contributed to a major 
fraction of the enrichment score, namely the leading-edge 
components. Appearing in leading-edge components of all 
three functions were ABL proto-oncogene 1 non-receptor 
tyrosine kinase (ABL1), B-cell CLL/lymphoma 2 (BCL2), 
and CD33 molecule (CD33).

Construction of a risk scoring system

In order to construct a risk scoring system, we 
analyzed the prognostic significance of expression of 
the 43 genes in survival. The survival analysis was 
conducted from the 104 patients (out of the 158 patients) 
who received standard intensive chemotherapy. Among 
the 46 probes associated with treatment response, 
11 were significantly associated with OS (univariate Cox  
P < 0.01). These probes represented 11 unique genes 
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Figure 1: A. The heatmap of the 46 differential expressed probes between the 19 patients with poor response 
(PR group) to the first induction chemotherapy and the 56 achieving continuous complete remission (GR group). 
The 11 genes which were significantly associated with OS were highlighted in bold text. GSEA enrichment plots on genes associated 
with functions of B. acute myeloid leukemia and C. proliferation of myeloid cells are shown. The GSEA plots were used to confirm 
and visualize the significant terms reported by IPA. GSEA first ranked all genes probed on the microarray based on their significance in 
differential expression between PR and GR groups (denoted by an arrow in the figure). For a significant IPA term (component genes of 
which are denoted by black line segments), GSEA adopted a walking scoring method (green curve) to measure the degree to which the 
genes within an IPA term is overrepresented (i.e., enriched) to the left of all genes. Significance of the enrichment score was assessed by a 
permutation test. As a result, genes related to the two functions were significantly differentially expressed between the PR and GR groups, 
suggesting significant correlations between these two pathways and the treatment response.
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(full gene list and results in Table 1; highlighted by 
boldface in Fig. 1A), and higher expression of each of these 
genes was associated with unfavorable prognosis (Kaplan 
Meier curves in Fig. S2). Based on the results we built a 
scoring system by incorporating the z-values (normalized 
gene expression levels, as defined in the Materials and 
Methods section) of the 11 genes with equal unity of 
weight to calculate a risk score for each patient. The 
risk score was significantly predictive of OS (univariate 
Cox P = 1.37 × 10−6 and log-rank P = 1.07 ×  10−5; 
Fig. 2A), and disease free survival (DFS) (univariate Cox 
P = 1.16 × 10−7 and log-rank P = 9.71 × 10−7, Fig. S3). 
We further applied random permutation to evaluate the 
performance of our proposed scoring system against a 
random baseline (detailed in the Materials and Methods 
section). Remarkably, the scoring system outperformed all 
of ten-thousand random systems iteratively constructed by 
random selections of 11 genes from the dataset (empirical 
P-value <1.00 × 10-4, see the Materials and Methods 
section), suggesting the non-randomness of performance 
achieved by the proposed risk score.

For validation analysis we used three independent 
gene expression datasets from two studies, one from The 
Cancer Genome Atlas (TCGA) [26] and two (GSE12417-
GPL96 and GSE12417-GPL570) from the study of Metzeler 
et al. [17]. The prognostic significance of higher risk score 
for unfavorable OS was validated by these independent 
cohorts of CN-AML (log rank P = 0.01, 0.004, and 0.001 
in TCGA (N = 97), GSE12417-GPL96 (N = 163), and 
GSE12417-GPL570 (N = 79), respectively) (Fig. 2B, 2C 
and 2D).

We compared the performance of this 11-gene to 
the 7-gene risk scoring system proposed from another 
study [20]. Although the two scoring systems do not share 
any genes, they had equivalent prediction performance 
as shown by the similar P values in the three validation 
cohorts (Table 2). This was further confirmed by a 
multivariate analysis that incorporates these two scoring 
systems as co-variables (data not shown).

Association of the scoring system with clinical 
and molecular characteristics

A higher risk score was positively associated with 
older age, lower count of white blood cells, and higher 
count of platelets (Table 3). FAB M1 leukemia occurred 
less frequently in the higher score group. The profiles of 
genetic mutations were significantly different between 
higher and lower score groups: patients with higher scores 
more often had FLT3-ITD, RUNX1, MLL-PTD, ASXL1, 
and DNMT3A mutations, but less likely had NPM1 and 
CEBPA mutations (Table 4). In particular, nearly all 
CEBPA-mutated patients were in the lower score group, 
whereas all MLL-PTD mutated patients were in the higher 
score group.

Survival analysis

The univariate analysis of the clinical parameters 
and molecular alterations on OS in our CN-AML patients 
was shown in Table S1. Since higher risk scores seemed 
to be highly associated with other poor prognostic 

Table 1: The list of 11 genes whose expression were significantly associated with overall survival 
among the 46 probes differential expressed between the patients with good and poor treatment 
response

Probe Gene Description Univariate 
Cox P

Hazard 
ratio

95% confidence 
interval

1410021 AIF1L allograft inflammatory factor 1-like 2.01E-03 1.657 1.203–2.284

450424 CXCR7 atypical chemokine receptor 3 1.00E-03 1.663 1.228–2.251

6280243 DNTT DNA nucleotidylexotransferase 9.10E-03 1.471 1.101–1.966

5490768 GPR56 G protein-coupled receptor 56 6.86E-03 1.617 1.141–2.291

630278 H1F0 H1 histone family, member 0 7.03E-03 1.619 1.140–2.298

6650242 IFITM3 interferon induced transmembrane 
protein 3 1.96E-04 2.152 1.438–3.222

3780647 KIAA0125 KIAA0125 5.06E-03 1.558 1.143–2.125

1690066 MX1 MX dynamin-like GTPase 1 5.81E-03 1.618 1.150–2.279

6040053 STAB1 stabilin 1 7.39E-03 1.566 1.128–2.174

2680110 TM4SF1 transmembrane 4 L six family 
member 1 5.93E-05 1.869 1.377–2.537

5560561 TNS3 tensin 3 7.13E-04 2.133 1.376–3.308
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Figure 2: The Kaplan Meier curves for OS according to the scores. A. In NTUH discovery set, patients with higher scores have 
significant shorter OS than those with lower scores (median 17.0 months vs. not reached, P < 0.001); B–D. In the three validation cohorts, 
the higher scores are all associated with poorer OS (median 12.2 vs 21.3 months, log rank P = 0.01 in TCGA; median 8.4 vs 24.7 months, 
log rank P = 0.004 in GSE12417-GPL96; median 10.1 vs 42.6 months, log rank P = 0.001 in GSE12417-GPL570).

Table 2: Comparison between ours and the published 7-gene scoring system by univariate analysis

Dataset
11-gene risk score 7-gene unweighted score 

(Marcucci et al. 2014) 

Hazard 
ratio

95% confidence 
interval P value* Hazard 

ratio
95% confidence 

interval P value*

NTUH (N = 104) 1.12 1.07~1.18 1.4 × 10−6 1.29 1.06~1.56 0.012

TCGA (N = 97) 1.05 1.00~1.09 0.042 1.16 1.01~1.33 0.035

GSE12417-GPL96 (N = 163) 1.08 1.04~1.12 8.7 × 10−5 1.28 1.12~1.47 3.7 × 10−4

GSE12417-GPL570 (N = 79) 1.09 1.02~1.17 9.7 × 10−3 1.35 1.12~1.62 1.3 × 10−3

*Cox regression univariate analysis.
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variables, we sought to investigate whether our scoring 
system functioned as an independent factor. We included 
variables that were significantly associated with clinical 
outcome from univariate analysis, including age, ELN 
(European LeukemiaNet) genetic group, MLL, RUNX1, 
TET2 mutations, and mRNA score, for multivariate 
analysis. We found higher scores appeared to be a strong 
independent risk factor (Table 5).

Biological functions associated with the scoring 
system

To gain biological insights into the risk scores, we 
further analyzed genes that were differentially expressed 
in patients with higher or lower risk scores. Patients with 
risk scores above and below the average by one standard 
deviation in the NTUH dataset were defined as the high-
risk and low-risk groups, respectively. We identified 578 
differentially expressed probes (Student’s t-test P < 0.05 
and >2-fold change) that corresponded to 509 unique 
genes. In the list, we identified some homeobox genes 
up-regulated in high-risk patients, including HOXA3 

(t-test P = 4.56 × 10−5), HOXA5 (P = 2.73 × 10−7), HOXA6 
(P = 3.34 × 10−7), HOXA9 (P = 4.72 × 10−8), HOXA10 
(P = 5.83 × 10−8), HOXB2 (P = 5.95 × 10−8), HOXB3 
(P = 5.61 × 10−5), HOXB4 (P = 1.37 × 10−6), HOXB5 
(P = 3.90 × 10−6), HOXB6 (P = 2.65 × 10−3), HOXB7 
(P = 2.21 × 10−3), HOXB8 (P = 1.78 × 10−2), MEIS1 
(P = 6.18 × 10−7), and PBX3 (P = 5.02 × 10−4). The 
homeobox genes are well known for their crucial functions 
in stemness maintenance, and adverse prognosis in 
AML when their expression levels are elevated [15, 27, 
28]. Furthermore, IPA revealed significant associations 
between the 509 differentially expressed genes with 
abundant important biological functions in AML (data 
available upon request), including proliferation of blood 
cells (P =  2.25 × 10−10), cell death of leukemia cell lines 
(P = 2.41 × 10−9), differentiation of hematopoietic 
progenitor cells (P = 9.85 × 10−7), and quantity of 
hematopoietic progenitor cells (P = 4.06 × 10−5). All of 
these functions were validated with significant enrichment 
by GSEA (empirical P-values all < 0.001; enrichment plots 
in Fig. 3 and Fig. S4). Taken together, our data indicate 
that the 11-gene scoring system modulates the treatment 

Table 3: Correlation between mRNA score and clinical and laboratory features in CN-AML 
patients (n = 158)

Variant Total
mRNA Score

P
Low (n = 79) High (n = 79)

Age* (years) 58 (16–90) 55 (18–87) 62 (16–90) 0.027

Age, in groups

>60 76 (48.1%) 32 (40.5%) 44 (55.7%) 0.056

>50 97 (61.4%) 43 (54.4%) 54 (68.4%) 0.072

Gender

male 90 (57.0%) 44 (55.7%) 46 (58.2%) 0.748

Lab data*

WBC (×103/μL) 28.88 (0.65–423.0) 41.38 (0.98–423.0) 24.72 (0.65–341.4) 0.042

Blasts (×103/μL) 13.77 (0–342.1) 18.69 (0–342.1) 10.78 (0–310.7) 0.056

Hemoglobin, g/dL 8.1 (3.7–14.0) 8.3 (4.2–14.0) 7.9 (3.7–13.2) 0.173

Platelets (×103/μL) 53.0 (6–331) 42.0 (6–214) 60.0 (9–331) 0.006

LDH (U/L) 878.0 (274–13130) 960.0 (354–13130) 804.0 (274–7177) 0.053

FAB 0.156

M0 2 (1.3%) 0 2 (2.5%) 0.155

M1 37 (23.4%) 24 (30.4%) 13 (16.5%) 0.039

M2 53 (33.5%) 28 (35.4%) 25 (31.6%) 0.613

M4 52 (32.9%) 22 (27.8%) 30 (38.0%) 0.176

M5 12 (7.6%) 4 (5.1%) 8 (10.1%) 0.230

M6 2 (1.3%) 1 (1.3%) 1 (1.3%) >0.999

*median (range)
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response of CN-AML patients through regulation of 
several crucial cellular functions.

DISCUSSION

In this study, we grouped the patients by their 
responses to induction chemotherapy in order to identify 
genes related to drug sensitivity. By this approach, 
we aimed to eliminate potential biases raised from 
our retrospective cohort. IPA analysis showed that 43 
differentially expressed genes were closely related to 
biological functions associated with “leukemia”, “acute 
myeloid leukemia”, and “proliferation of myeloid 

cells”. Moreover, using GSEA, we found ABL1, BCL2, 
and CD33 were among leading-edge components of all 
three functional categories. Expression of BCL2, both 
at transcriptional and translational levels, is known to 
correlate with poor treatment responses to chemotherapy 
and low complete remission rates in AML [29–31]. 
While ABL1 has been relatively unexplored in AML, it 
has been implied for association with the resistance of 
chemotherapy in chronic myeloid leukemia [32]. Our data 
indicated these genes may be highly involved in crucial 
biological functions that determined treatment response.

A high risk score was associated with unfavorable 
mutations (FLT3-ITD, MLL-PTD, ASXL1, RUNX1, 

Table 4: Correlation of mRNA score with other gene alterations

Mutation Total (n = 158)
mRNA Score

P
Lower (n = 79) Higher (n = 79)

NPM1 78 (49.4%) 47 (59.5%) 31 (39.2%) 0.011

FLT3-ITD 52 (32.9%) 20 (25.3%) 32 (40.5%) 0.042

NPM1+/FLT3-ITD- 45 (28.5%) 32 (40.5%) 13 (16.5%) 0.001

CEBPAdouble 21 (13.5%) 20 (25.6%) 1 (1.3%) <0.001

CEBPA 30 (19.2%) 29 (37.2%) 1 (1.3%) <0.001

WT1 13 (8.3%) 4 (5.1%) 9 (11.5%) 0.148

RUNX1 26 (16.6%) 2 (2.6%) 24 (30.4%) <0.001

IDH1 12 (7.7%) 6 (7.7%) 6 (7.7%) >0.999

IDH2 28 (17.9%) 18 (23.1%) 10 (12.8%) 0.095

FLT3-TKD 14 (9.0%) 7 (9.0%) 7 (9.0%) >0.999

MLL-PTD 10 (6.5%) 0 10 (12.8%) 0.001

KIT 2 (1.3%) 2 (2.6%) 0 0.155

KRAS 3 (1.9%) 1 (1.3%) 2 (2.6%) 0.560

NRAS 24 (15.4%) 14 (17.9%) 10 (12.8%) 0.375

ASXL1 20 (12.7%) 3 (3.8%) 17 (21.5%) 0.001

TET2 31 (19.9%) 15 (19.2%) 16 (20.5%) 0.841

DNMT3A 40 (25.6%) 13 (16.7%) 27 (34.6%) 0.010

Table 5: Multivariate analysis (Cox regression) for the OS in CN-AML cohort
Variables Hazard ratio 95% confidence interval P value

Age 1.030 1.006~1.054 0.012

ELN genetic group¶ 1.191 0.472~3.004 0.711

MLL# 1.058 0.289~3.868 0.932

RUNX1# 0.653 0.261~1.635 0.363

TET2# 2.876 1.234~6.701 0.014

mRNA score 1.146 1.061~1.238 0.001

¶ELN favorable risk vs. Intermediate-1 risk
#mutated vs wild
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and DNMT3A mutations) but inversely associated with 
favorable ones (NPM1 and CEBPA mutations). Radmacher 
et al. showed a strong correlation between the prognostic 
classifier and the status of FLT3-ITD, but not that of 
MLL-PTD, NPM1, or CEBPA mutations [16]. In addition, 
Metzeler et al. demonstrated that a high risk signature 
was associated with FLT3-ITD, WT1, RUNX1, and TET2 
mutations, but inversely associated with CEBPA mutations 
[18]. Nevertheless, we demonstrated the independence of 
our signature from other important prognostic factors. 
These observations suggest that our scoring system 
bears similar biological implications to other parameters 
on clinical outcome yet stands alone as a new tool for 
prediction of treatment response.

We constructed a simple mRNA signature as a 
prognostication tool based on the expression levels of 
11 genes for CN-AML patients, a subgroup in which the 
requirement of prognostic parameters is yet unmet. Several 
study groups have developed gene expression signature for 
predicting prognosis in AML patients. In six studies [15–
20, 33], the results were validated by independent datasets, 
as in ours. The 11 gene signature of our mRNA scoring 
system included GPR56, KIAA0125, TM4SF1, AIF1L, 
CXCR7, DNTT, H1F0, IFITM3, MX1, STAB1, and TNS3; 
only the first three were seen in another mRNA signature 
[17], reflecting the variations in study populations or 
treatment protocols. Although there was no overlap of 
the genes between our proposed scoring system and the 
7-gene signature proposed from an epigenetic study [20] 
or the 24-gene score improving the ELN classification 

[33], our system-derived scores were moderately 
correlated with the scores from the two studies (correlation 
coefficients, 0.68 and 0.45, respectively, data not shown). 
Such concordance implies these prognostic scores, though 
derived from different analysis schemes, might represent 
common underlying biological mechanisms. Future study 
may further address this in a larger AML cohort. Current 
knowledge about the association between the 11 genes 
and malignancies is summarized in Table 6. In some 
studies aberrant expression of CXCR7 [34–36], DNTT 
[37, 38], GPR56 [39], H1F0 [40], and MX1 [41] is seen 
in leukemia. Little is known about the role of AIF1L and 
KIAA0125 [42] in pathogenesis of cancers. IFITM3 [43], 
MX1 [44–46], STAB1 [47], TM4SF1 [48, 49], and TNS3 
[50–52] may have roles in various solid cancers, but they 
are not yet explored in AML. STAB1 [47], TM4SF1 [49], 
and TNS3 [52] are involved in cell adhesion and motility, 
which are relevant to cancer metastasis and invasion, 
however, their roles in interaction between leukemic stem 
cells and bone marrow niche deserve further investigation.

In conclusion, we present a simple mRNA 
expression scoring system for prognostication of 
CN-AML. The scoring system was validated by three 
independent cohorts and has comparable performance as 
the system proposed by Marcucci et al. [20]. Our scoring 
system is composed of only 11 genes, making it highly 
potential in clinical use. Its positive association with 
multiple clinically relevant gene mutations suggests that 
it has incorporated the prognostic implications of multiple 
conventional risk factors. Our scoring system may 

Figure 3: GSEA enrichment plots on genes associated with A. differentiation of hematopoietic progenitor cells and B. cell 
death of leukemic cell lines. Genes related to these two functions were significantly differentially expressed between the 
patients with higher and lower mRNA scores, suggesting significant correlations between these two pathways and the scoring.
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provide another prognostic reference other than genetic 
mutations currently used for CN-AML. However, a large 
prospective cohort in which a q-PCR-based measurement 
of the expression of the 11 genes is necessary for clinical 
application of this scoring system.

MATERIALS AND METHODS

Patients

We recruited a total of 351 adult patients (≥15 
years of age) with newly diagnosed de novo AML from 
1995 to 2011 at the National Taiwan University Hospital 
(NTUH), who had adequate cryopreserved bone marrow 
cells for mRNA array studies. Patients with antecedent 
hematological malignancies or therapy-related AML 
were excluded. The bone marrow specimens were 
harvested by bone marrow aspiration. The mononuclear 
cells were isolated by treating with Ficoll-Paque. This 
study was performed in accordance with the Declaration 
of Helsinki and was approved by the Research Ethics 
Committee of the NTUH. We focused on the 158 patients 
(45.0%) with CN-AML. Among these patients, 104 
(65.8%) received standard intensive chemotherapy as 
described previously [53]. Briefly, they received induction 
chemotherapy (idarubicin 12 mg/m2 per day on days 1 to 
3 and cytarabine 100 mg/m2 per day on days 1 to 7) and 
then consolidation chemotherapy with 2 to 4 courses of 
high-dose cytarabine (2000 mg/m2 every 12 hours; total 
8 doses), with or without an anthracycline (idarubicin or 
mitoxantrone), after achieving complete remission (CR). 

The remaining 54 patients were treated with palliative care 
or low-dose chemotherapy due to patients’ preference or 
poor performance status. All 158 patients were included 
for analyses of correlation between the risk score and 
clinical and other biological parameters, but only the 104 
patients who received standard intensive chemotherapy 
were included for survival analysis. Forty of the 104 
patients received allogeneic hematopoietic stem cell 
transplantation (HSCT); they were censored on the day 
of stem cell infusion to avoid confounding factors brought 
by the HSCT therapy. In the survival analysis, >90% 
statistical power can be achieved based on a sample of 
at least 93 patients (at a 0.01 significance level to detect 
a hazard ratio of 2; calculated by PASS software (NCSS, 
Kaysville, Utah)).

Cytogenetic and mutation analysis

Chromosomal abnormalities and gene mutations 
were analyzed as described previously [3, 53–56].

mRNA microarray analysis and data processing

We profiled whole-genome gene expression 
of 158 patients using Illumina HumanHT-12 v4 
Expression BeadChip (Illumina, San Diego, CA), 
following the manufacturer’s instructions. Briefly, we 
verified RNA concentration and integrity with ND-1000 
spectrophotometer (NanoDrop Technologies, Wilmington, 
DE) and 2100 Bioanalyzer (Agilent Technologies, Palo 
Alto, CA). 1.5 μg cRNA of each sample was hybridized 

Table 6: Summary of the association between 11 genes and malignancy
Probe Gene Association with leukemia or solid cancers

1410021 AIF1L No data

450424 CXCR7
Essential for the survival and growth of tumor cells [34]; Highly expressed in several human 
myeloid malignant cell lines [35]; Overexpressed in CN-AML patients with adverse clinical 
outcomes [36]

6280243 DNTT Lymphoid regulator, up-regulated in RUNX1-mutated CN-AML [37, 38]

5490768 GPR56* Influencing adhesion, migration, homing and mobilization of AML stem cells through the 
RhoA signaling pathway, especially in EVI1 over-expressed leukemia [39]

630278 H1F0 Important for murine erythroleukemia cell differentiation [40]

6650242 IFITM3 Overexpression in gastric cancer [43]

3780647 KIAA0125* Not reported yet in cancers, but involved in neurogenesis and the pathogenesis of Alzheimer’s 
disease [42]

1690066 MX1 Diminished expression in AML [41]; Up-regulated in lymph node-positive colorectal cancer 
[44]; Down-regulated in renal cell carcinoma [45] and head and neck cancers [46]

6040053 STAB1 Cell adhesion and motility [47]

2680110 TM4SF1* Prostate cancer [48]; Pancreatic cancer, cell adhesion and motility [49]

5560561 TNS3 Renal cell carcinoma [50, 51]; Breast cancer, cell adhesion and motility [52]

*genes also seen in the classifier of Metzeler et al. [17]
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to Illumina HumanHT-12 v4 Expression BeadChip. 
Intensities of bead fluorescence were detected with 
Illumina BeadArray Reader (Illumina, San Diego, CA), 
followed by transformation to numeric values using 
GenomeStudio v2010.1 software (Illumina, San Diego, 
CA). We performed Log-2 transformation and quantile 
normalization for the data to achieve normalized probe-
level expression values. The microarray data have been 
deposited in the Gene Expression Omnibus (accession 
number: GSE71014).

External dataset processing

For validation analysis we included three 
independent gene expression datasets from two studies, 
one from The Cancer Genome Atlas (TCGA) [26] and 
two (GSE12417-GPL96 and GSE12417-GPL570) from 
the study of Metzeler et al. [17]. The TCGA dataset was 
composed of gene expression profiles from 197 AML 
samples (97 CN) achieved by Affymetrix Human Genome 
U133 Plus 2.0 Array. Level-2 data, which were probe-
level pre-normalized signals processed by TCGA, were 
downloaded and transformed into Log-2 scale. The two 
datasets from the study by Metzeler et al., including 163 
and 79 CN-AML patients, respectively, were profiled with 
Affymetrix Human Genome U133 Plus 2.0 Array. We used 
the authors’ pre-processed datasets deposited in the Gene 
Expression Omnibus (GEO, accession ID GSE12417) 
[57]. In the three datasets, each of the genes with multiple 
probes was represented by the most “informative” probe 
that carried the largest coefficient of variation, defined 
as the ratio of per-probe standard deviation to per-probe 
average.

Statistical analysis

Statistical significance of differential expression of 
genes between two groups of samples was assessed using 
Student’s t-test. For survival analysis, expression values 
of each dataset were first z-transformed (i.e., subtraction 
of sample mean followed by division by sample 
standard deviation for each probe) to approximately 
follow the normal distribution (zero mean and unity 
standard deviation). We then utilized the univariate Cox 
proportional hazards model to determine association 
between expression of individual genes and patient 
survival.

We employed a ten-thousand-time random 
permutation test to evaluate the performance and 
randomness of constructed risk scoring system with the 
process as described previously [58]. Briefly, in each of the 
ten thousand iterations a random system was constructed 
by substituting the genes in the proposed scoring system 
with randomly selected ones from the microarray dataset. 
Each random system was tested for survival significance. 
After all iterations, significance of the proposed system 
was measured by the empirical P-value, which was simply 

the fraction of random risk systems that achieved higher 
Cox significance than the proposed system.

We adopted Kaplan-Meier estimation to plot 
survival curves and used log-rank tests to examine the 
difference between groups. The patients who received 
allogeneic HSCT were censored on the day of cell 
infusion. Hazard ratio and 95% confidence interval 
were estimated by Cox proportional hazards regression 
models to determine independent risk factors associated 
with survival in multivariate analyses. For analysis 
of differential expression, two-sided P values from 
Student’s t-test less than 0.05 were considered statistically 
significant. The whole patient population was included for 
analyses of correlation between the risk score and clinical 
characteristics and molecular alternations; however, only 
those receiving conventional standard chemotherapy, as 
mentioned above, were included in analyses of survivals.

Functional annotation analysis

In order to gain biological insights into identified 
groups of genes, we further incorporated two functional 
annotation tools, Ingenuity Pathway Analysis (IPA; 
Qiagen, Redwood City, CA) [24] and Gene Set 
Enrichment Analysis (GSEA, Java program downloadable 
athttp://www.broadinstitute.org/gsea/index.jsp) [25]. 
IPA is a knowledge-based database that features manual 
curation of a huge volume of published literatures. It 
employs Fisher’s exact test to assess the significance of 
association between biological functions and the set of 
genes of interest (e.g. differentially expressed genes). 
We used GSEA to further verify the results of IPA. 
Instead of analyzing sets of genes of interest, GSEA 
is designed to detect whether a biological function is 
enriched in the whole-genome expression pattern; i.e., 
significant P-value from GSEA indicates significant 
overall enrichment of genes sharing a common function 
in genes with differential expressions. Here the gene 
sets (biological functions) were downloaded from the 
IPA database. Significance of enrichment was assessed 
based on the two-thousand-time random permutation test 
among genes.
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