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ABSTRACT

Acute myeloid leukemia (AML) in children is a complex and heterogeneous 
disease. The identification of reliable and stable molecular biomarkers for diagnosis, 
especially early diagnosis, remains a significant therapeutic challenge. Aberrant 
microRNA expression could be used for cancer diagnosis and treatment selection. Here, 
we describe a novel bioinformatics model for the prediction of microRNA biomarkers 
for the diagnosis of paediatric AML based on computational functional analysis of 
the microRNA regulatory network substructure. microRNA-196b, microRNA-155 and 
microRNA-25 were identified as putative diagnostic biomarkers for pediatric AML. 
Further systematic analysis confirmed the association of the predicted microRNAs with 
the leukemogenesis of AML. In vitro q-PCR experiments showed that microRNA-155 is 
significantly overexpressed in children with AML and microRNA-196b is significantly 
overexpressed in subgroups M4–M5 of the French-American-British classification 
system. These results suggest that microRNA-155 is a potential diagnostic biomarker 
for all subgroups of paediatric AML, whereas microRNA-196b is specific for subgroups 
M4–M5.

INTRODUCTION

Acute myeloid leukemia (AML) is a rare and 
heterogeneous cancer that arises from the clonal 
transformation of hematopoietic precursors. It is the most 
common type of leukaemia diagnosed during infancy, 
accounting for 15–20% of cases of acute childhood 
leukemia. The overall survival (OS) rate of patients with 
AML has improved significantly in the last decades, and 
is currently in the range of 60–70% [1, 2]. Chemotherapy 
induces complete remission (CR) in approximately 90% 
of children. However, approximately one third of patients 
experience relapses with modern intensive chemotherapy 
protocols [2, 3]. Furthermore, the improvements in AML 

can be largely attributed to intensive use of conventional 
cytotoxic chemotherapy, whose late effects cause 
significant morbidity for many survivors. In contrast to 
the high OS rate (> 80%) of acute lymphocytic leukemia 
(ALL), the improvements in AML diagnosis and therapy 
have been limited. Therefore, novel approaches to the 
diagnosis and treatment of AML are needed [4].

MicroRNAs (miRNAs) are 18 to 22 nucleotide 
noncoding RNAs that regulate gene expression. They 
are predicted to silence over 60% of mammalian genes 
[5]. They are involved in a variety of critical biologic 
process, including cell cycle progression, differentiation, 
apoptosis, and immune responses [6–8]. miRNAs show 
aberrant expression patterns and functional abnormalities 
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in cancers, and the expression pattern can be correlated 
with cancer type, stage, and other clinical variables [9]. 
Therefore, the identification of miRNAs may provide 
potential diagnostic biomarkers and therapeutic targets 
for cancer treatment.

In adult AML, several miRNAs display aberrant 
expression. Compared with healthy samples, miRNAs 
downregulated in AML could function as tumor 
suppressors, such as the miR-29 family. A comprehensive 
study investigated all members of the miR-29 family, 
including miR-29a, -29b and -29c. The downregulation 
of the miR-29 family during AML development results in 
the upregulation of their target proteins Akt2 and CCND2, 
which are involved in the regulation of cell proliferation 
and cell apoptosis [10]. miR-223 is downregulated in 
different subtypes of AML [11]. Downregulation of miR-
193b upregulates the c-Kit proto-oncogene and represses 
cell proliferation in AML [12]. On the other hand, let-7e, 
miRNA-155 and miRNA-196b are overexpressed in adult 
AML patients [13–15]. However, there are important 
differences in both the diagnostic criteria and disease 
management between adults and children with AML [3]. 
The identification of miRNA biomarkers of paediatric 
AML remains limited. Furthermore, current efforts 
in biomarker identification have been directed at the 
detection of dysregulated miRNAs in miRNA expression 
profiles, which is not sufficient. Systematic methods that 
integrate information, such as microRNA regulatory data, 
gene expression profiles, and gene functional information 
are necessary to identify miRNA biomarkers.

POMA (Pipeline of Outlier MicroRNA Analysis), 
a prediction model previously developed by our group, 
could meet such needs [16]. This model defines a 
novel out degree (NOD), i.e., the number of genes 
exclusively targeted by certain microRNA (also 
known as unique target genes, UTGs) to measure the 
independent regulatory power of individual miRNAs 
[16–18]. Based on miRNA regulatory data and gene 
expression profiling data, POMA evaluates the relevance 
of miRNAs to given disease conditions, and it has been 
successfully applied to identify potential biomarkers 
in prostate cancer [18], clear cell renal cell carcinoma 
[16], and sepsis [17]. However, the POMA model does 
not consider the characteristics and function of the target 
genes of miRNAs, which play important roles in disease 
occurrence and development.

In the present study, we improved the POMA model 
by adding measurement of transcription factor percentage 
(TFP) of the microRNA target genes. There are three 
main reasons to include TFP measurement. First, the 
number of TFs targeted by a certain dysregulated miRNA 
is positively correlated with the number of downstream 
genes affected. Thus, dysregulated microRNAs with high 
regulatory potential of TFP may influence the expression 
of more genes directly or indirectly, and have a greater 
contribution to carcinogenesis. Second, TFs lie at the heart 

of various biological processes, such as DNA replication 
and repair, development, control of apoptosis, and 
cellular differentiation. Therefore, TF genes with aberrant 
expression will contribute to human carcinogenesis. Last 
but most important, most of the current studies about 
miRNA biomarker identification for cancer and other 
diseases are based on the global characters of the miRNA-
mRNA network [19–21], and few studies have focused on 
the substructure of the network [22]. The substructures of 
the miRNA-mRNA network, such as miRNA-TF feed-
forward loops and feedback loops, play an important role 
in cell proliferation, differentiation, and development, and 
are involved in several types of cancer [23].

The improved POMA model is based on three 
hypotheses as follows: 1) miRNA activity could be 
reflected by the aberrant expression of its target genes; 
2) miRNAs with larger NOD values are more likely 
to be biomarker candidates; and 3) in the miRNA 
set from hypothesis 2, miRNAs that target more 
transcription factors are more likely to be biomarkers. 
Using the model, we identified miR-196b, miR-155 
and miR-25 as potential biomarkers for AML based on 
miRNA and mRNA expression profiles from paediatric 
patients. The analytical pipeline of this paper is shown 
in Figure 1.

RESULTS

Biomarkers display high NOD and Transcription 
Factor Percentage (TFP)

To confirm the NOD and TFP value distribution 
features of miRNAs, we investigated these two values 
for miRNAs in the context of the miRNA-mRNA 
network from the POMA model. A total of 126 miRNA 
biomarkers previously identified as biomarkers in 
11 types of cancers were collected from the literature 
(Supplementary Table S4). As shown in our previous 
study, there is a statistically significant difference of 
NOD between potential biomarkers and other miRNAs 
(Wilcoxon test, p value = 3.416E-12) [18]. NOD 
distribution of the miRNA is shown in Figure 2A, which 
indicates that NOD values were positively correlated with 
the number of potential miRNA biomarkers. Therefore, 
we selected the miRNAs with the largest NOD values for 
future analysis and marked them as Set1.

To investigate the regulatory power of miRNA 
biomarkers, we defined a new parameter, namely TFP. 
The percentage of transcription factors among Set1 
miRNA target genes was calculated and denoted as the 
TFP value. The biomarkers had significantly larger TFP 
values than the remaining miRNAs in Set1 (p = 0.0381, 
Wilcoxon test). TFP distribution is shown in Figure 2B, 
which indicates that the majority of miRNAs with larger 
TFP values (especially larger than 0.2) were potential 
biomarkers.
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Our improved POMA method showed a better 
performance than the previous model. Using the previous 
POMA method, which identifies miRNA markers 
according to their NOD values, 203 miRNAs were 
identified as potential markers and 33% (67 miRNAs) 
had previously been reported as cancer biomarkers. 
According to the improved POMA model, which includes 
consideration of the NOD value and the TFP, 7 of the 
10 identified miRNAs had previously been reported as 
biomarkers.

Identifying candidate microRNA biomarkers for 
pediatric aml

Candidate miRNA biomarkers for pediatric AML 
were identified from the miRNA-mRNA association 
network. Firstly, the pediatric AML-specific miRNA-
mRNA network (PAMLNet) was constructed from 
the expression profile (see methods) obtained with 
the POMA method. It comprised 531 links between 19 
miRNAs and 406 genes. The network links are listed 
in Supplementary Table S5. The NOD and TFP values 

corresponding to each of the miRNAs in the PAMLNet 
were calculated and listed in Table 1. As shown in 
Figure 2C, the NOD values for all the miRNAs (rectangle 
nodes) were > 0 and the NOD values for certain miRNAs, 
such as miR-26b, miR-155, miR-196b, and miR-16 were 
large (the size of the square node represents the NOD 
value, i.e., the larger the node, the larger the NOD value). 
Some miRNAs had a greater number of associated TF 
genes (labeled as gray nodes), such as miR-155.

We select the miRNAs with significantly larger 
NOD values (Wilcoxon test, NOD > 23) and narrowed the 
list to a set of five miRNAs. Since only five miRNAs were 
detected, we selected those with the highest TFP values 
as the candidate biomarkers, and these were miR-196b, 
miR-155 and miR-25. The miRNAs analyzed and their 
corresponding target genes are shown in Figure 2D.

Functional analysis of the target genes of 
candidate microRNA biomarkers

To explore the function of the predicted miRNA 
biomarkers and identify their regulated pathways in 

Figure 1: Analysis pipeline of the study. 
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Figure 2: A. Novel out degree (NOD) distribution of microRNA (miRNA) biomarkers and other miRNAs. B. Transcription factor 
percentage (TFP) distribution of miRNA biomarkers and other miRNAs. In Figure 2A and 2B, biomarkers and others are represented 
by slashes and solid color, respectively. C. Paediatric acute myeloid leukaemia (AML) specific miRNA-mRNA network. D. candidate 
miRNAs with their target genes. Rectangle nodes represent miRNAs and the node size represents NOD values, i.e., the larger the node, the 
greater the NOD value. Circular nodes are genes and TF genes are marked by grey nodes. In Figure 2D, nodes without a black border are 
the genes exclusively regulated by a specific miRNA.
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pediatric AML, we performed gene enrichment analysis 
using MetaCore from GeneGo (Thomson Reuters). The 
predicted candidate miRNA biomarkers, along with 
their regulated genes (see Supplementary Table S6), 
provided the potential miRNA-mRNA interaction pairs 
in AML.

The enrichment analysis was performed on all 
target genes of miR-196b, miR-155 and miR-25. As 
shown in Figure 3A and 3B, The target genes were 
significantly enriched in two MetaCore pathways, namely 
mismatch repair (belonging to DNA damage) and sister 
chromatid cohesion (belonging to cell cycle) (p < 0.05 
and FDR < 0.05). Four objects, namely MLH1, MSH2, 
MSH6 and the MutSalpha complex, were mapped in the 
mismatch repair pathway, of which MLH1 is associated 
with AML (see Figure 3A). Mismatch repair systems 
correct mismatches that form during DNA synthesis and 
genetic recombination, and as a result of DNA damage. 
Abnormalities of mismatch repair could play a key role in 
leukemogenesis, in particular in the development of AML 
[27]. Loss of the mismatch repair function is associated 
with refractory and relapsed AML and may contribute to 
disease pathogenesis [28].

Four objects were significantly enriched in the 
sister chromatid cohesion pathway, i.e., SMC3, SMC1, 

Stromalins 1/2 (STAG2), and histone H3 (see Figure 3B). 
Sister chromatid cohesion enables equal segregation of 
the duplicated genome to form daughter cells long after 
DNA replication has occurred [29]. Five objects were 
associated with AML, of which three were the mapped 
objects (SMC3, SMC1, and Stromalins 1/2) according to 
the MetaCore database. Recurrent mutations and deletions 
involving multiple components of the mitotic cohesion 
complex, including STAG2, RAD21, SMC1A and SMC3, 
were reported in different myeloid neoplasms. These 
mutations and deletions were mostly mutually exclusive 
and occurred in 12.1% of AML [30].

Gene Ontology biological process classification 
of all target genes divided unique target genes (UTGs) 
and TF genes among the candidate miRNAs into 
nine groups, namely cell cycle, cell proliferation and 
differentiation, cell death and apoptosis, development, 
growth and angiogenesis, transcription, translation and 
post-translation, transport and transduction, protein 
phosphorylation and methylation and others (Figure 4). 
Most target gene groups for miR-196b, -155 and -25 
(Figure 4A–4C) had a relatively even distribution among 
the corresponding unique and TF targets. However, a 
greater number of UTGs and TF genes of miR-196b 
(Figure 4D and 4G) and TF genes of miR-155 (Figure 4H) 

Table 1: miRNAs in the pediatric AML specific microRNA-mRNA network
miRNA Targets Number NOD TFP (Number of TF)

let-7a 17 5 0.059 (1)

let-7f 12 2 0.083 (1)

microRNA-10a 35 20 0.057 (2)

microRNA-155 38 28 0.289 (11)

microRNA-16 59 48 0.068 (4)

microRNA-181b 12 8 0.250 (3)

microRNA-191 27 16 0.111 (3)

microRNA-196b 47 30 0.191 (9)

microRNA-19a 12 2 0.333 (4)

microRNA-19b 14 4 0.214 (3)

microRNA-20a 22 15 0.182 (4)

microRNA-218 8 6 0.000 (0)

microRNA-221 5 4 0.200 (1)

microRNA-223 8 4 0.125 (1)

microRNA-25 62 32 0.242 (15)

microRNA-26b 81 53 0.111 (9)

microRNA-425 32 19 0.125 (4)

microRNA-92a 11 1 0.182 (2)

microRNA-95 27 16 0.148 (4)
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Figure 3: Enriched pathways of candidate miRNAs. A. Mismatch repair pathway (belong to DNA damage). B. Sister chromatid 
cohesion pathway (belong to cell cycle). Objects with bars are mapped genes and those marked with a ‘D’ in the hexagon are associated 
with AML. Detail legends of the MetaCore pathways are provided in Supplementary Figure S1.
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belonged to the development, growth and angiogenesis 
groups (>= 20%). More than one third of the TF genes 
of the three miRNAs were involved in the transcription 
group, and more than 30% of genes belonged to the cell 
cycle, proliferation and differentiation, cell death and 

apoptosis, and development, growth and angiogenesis 
groups, which are among the hallmarks of cancer [31] 
regardless of type. This indicates that miR-196b, miR-155 
and miR-25 have a critical function in AML and may be 
potential biomarkers.

Figure 4: Pie charts of the biological processes of all target genes, unique target genes and TF genes of candidate 
miRNAs. A, B and C. all target genes of miR-196b, miR-155 and miR-25. D, E and F. unique target genes of miR-196b, miR-155 and 
miR-25 G, H and I. TF genes of miR-196b, miR-155 and miR-25
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In vitro and literature validation of candidate 
paediatric AML miRNA biomarkers

To further validate the three predicted miRNA 
biomarkers for paediatric AML, we assessed differences 
in their expression between pediatric AML and non-
malignant disease samples using q-PCR technology. As 
shown in Figure 5, miR-155 was differentially expressed 
between the two groups of samples (p < 0.05), whereas 
no differential expression was detected for miR-196b and 
miR-25 (Figure 5A–5C). miR-155 was overexpressed in 
AML samples, and was therefore identified as a novel 
diagnostic biomarker for pediatric AML. Although miR-
196b did not show significantly differences in expression 
between AML and controls, it was overexpressed in FAB 
M4-M5 samples when compared with controls (p = 0.011) 
and non-M4-M5 AML (p = 0.013) samples (Figure 5D). 
The expression of miR-196b in different samples is shown 
in Supplementary Table S7, and it suggests that miR-196b  
could be a diagnostic biomarker for AML subtypes  
M4-M5. Since miR-196b and miR-25 did not show 
significant outlier activity in paediatric AML, additional 
samples are needed to validate their roles.

We also performed a literature search of the three 
candidate miRNA markers to validate their relevance 
in the regulation of AML (Supplementary Table S8). 
Overexpression of miR-196b could result in increased 
proliferation, a partial differentiation block, and may 
contribute to leukemogenesis [32]. miR-196b is 
upregulated in adult AML patients compared to ALL 
patients and significantly associated with overall survival of 
AML patients [33]; therefore, it could serve as a prognostic 
marker for intermediate-risk cytogenetic AML [34].

miR-155 is a product of the B-cell integration 
cluster (BIC) and has significant impact on the biology of 
lymphocytes [35, 36]. It appears to play a role in myeloid 
differentiation [37] and immune function [38]. Sustained 
expression of miR-155 drives granulocyte/monocyte 
expansion in mice, and directly represses genes implicated 
in hematopoietic development [14]. It is upregulated 
in adult AML samples compared with healthy donors 
[14, 15].

miR-196b and miR-155 are associated with 
particular genetic subtypes, such as adult AMLs with 
FLT3 and NPM1 mutation [39–41], MLL rearrangements 
[42], as well as in pediatric AML patients [24].

DISCUSSION

Since miRNAs can act both as oncogenes and tumor 
suppressor genes, their function is mostly regulatory and 
they are good candidates as cancer biomarkers [43, 44]. 
This underscores the need to develop methods to predict 
miRNA biomarkers. In our previous study, we defined 
an index termed NOD to measure the independent 

regulatory power of an individual miRNA [16–18]. In the 
present study, we introduced a new parameter, i.e. TFP, to 
measure the percentage of transcription factors regulated 
by a specific miRNA. Our results indicated that miRNAs 
with high NOD and TFP values were more likely to be 
biomarkers.

Based on this evidence, we improved the POMA 
method by taking into account the TF percentage among 
miRNA target genes to infer candidate biomarkers. The 
method was then applied to paediatric AML. Our results 
predicted miR-196b, miR-155 and miR-25 as biomarkers; 
we showed that miRNA-155 was overexpressed in AML 
samples and miR-196b was overexpressed in the M4-M5 
subtype of AML in vitro by qRT-PCR. Although miR-196b 
and miR-25 did not show differential expression, miR-
196b was previously reported to be aberrantly expressed 
in adult AML, especially in AML with FLT3 and NPM1 
mutations.

There is limited information on miR-25, although 
it has been reported to be associated with overall survival 
of AML patients [33]. The involvement of miR-25 in 
human malignancies has been reported, including its 
role in promoting cell proliferation [45], regulating 
tumor cell apoptosis [46, 47], and promoting tumor 
invasion and metastasis [48]. It is aberrantly expressed 
in multiple cancers including gastric cancer [45], lung 
adenocarcinoma [49], and ovarian cancer [46] among 
others. Target genes of miR-25, such as STAG2, are 
abnormal in AML and may contribute to the development 
of AML [30, 50].

We performed a computational functional analysis 
of the target genes of three miRNAs. Two MetaCore 
pathways with significant enrichment of miRNA targets 
were found. An association between these pathways 
or their constituent objects with AML was previously 
reported. Moreover, more than one third of the targets of 
the predicted miRNAs are involved in biological processes 
that are among the hallmarks of cancer. The computational 
functional analysis supported our identification of miRNA 
biomarkers in pediatric AML.

The network-based approach of the present study 
identified potential biomarkers in pediatric AML and 
provides a systemic method to integrate different data. 
The co-regulation of miRNAs and TFs was not considered 
in the present model, and more detailed functional 
information of TFs needs to be integrated into our future 
models to improve the prediction.

Unbalanced datasets including more disease samples 
than healthy control samples may limit the power of the 
model for detecting true biomarkers. In the computation 
section of the present study, the published miRNA and 
mRNA datasets used contained fewer healthy controls than 
AML samples. To decrease the impact of this limitation, 
we included a higher number of control samples in the 
experimental validation section to make the number of 
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AML and healthy control samples comparable, although 
the samples were difficult to harvest. In addition, the 
validation of conclusions depends on the quality of the 
input data. Our conclusions need to be validated in a large 

dataset in a future study. The objective of the present study 
was to identify putative miRNA biomarkers, and we used 
mRNA expression to infer the important miRNAs based 
on the miRNA-mRNA network. In the future, we could 

Figure 5: qRT-PCR results for miR-196b, miR-155 and miR-25. A. miR-155 relative expression comparison between primary 
childhood AML and non-malignant disease controls (Mann-Whitney U test, p < 0.001). B. miR-25 relative expression comparison 
between primary childhood AML and non-malignant disease controls (Mann–Whitney U test, p = 0.609). C. miR-196b relative expression 
comparison between primary childhood AML and non-malignant disease controls (Mann–Whitney U test, p = 0.667). D. miR-196b relative 
expression comparison between AML M4-M5 subtypes and controls (Mann–Whitney U test, p = 0.011), AML non M4-M5 subtypes and 
controls (p = 0.025), and AML M4-M5 subtypes and non-M4-M5 subtypes (p = 0.013), respectively. The comparison among these three 
groups was performed using the Kruskal-Wallis test (p = 0.004).
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assess the protein expression levels of transcription factors 
to further optimize the model; however, at present, the 
protein level information is not required as input in our 
model.

In summary, we established a systematic 
level framework that integrates miRNA and mRNA 
expression data, and gene functional information 
based on POMA. The method identified miR-155 and  
miR-196b as promising potential diagnostic biomarkers 
for pediatric AML and AML subtype M4-M5, 
respectively.

MATERIALS AND METHODS

Dataset collection

The miRNA and mRNA expression datasets on 
pediatric AML were downloaded from the public database 
NCBI GEO. The miRNA expression dataset (GSE35320) 
comprises 102 pediatric AML samples, 6 adult AML 
samples and 2 healthy controls [24]. The present study 
used the 102 pediatric samples and 2 controls. Normalized 
miRNA data were downloaded directly for further 
analysis. In the mRNA expression dataset (GSE43176), 
there are 104 childhood AML samples and 4 healthy 
samples [25]. Detailed information of the two datasets 
is provided in Supplementary Table S1. The raw data of 
mRNA expression profiles were downloaded and then 
analysed using the ‘affy’ package from BioConductor 
with the RMA method. For genes with multiple probes, 
the average probe intensity was calculated.

Prediction of pediatric AML  
microRNA biomarkers

Our improved POMA model was used to predict 
paediatric AML biomarkers. The previous version of 
POMA consists of four procedures as follows: detection 
of differential expressed miRNAs (DE-miRNA) and 
mRNAs (DE-mRNA), acquisition of inverse correlation 
pairs between miRNAs and mRNAs, construction of 
disease specific miRNA-mRNA networks and prioritizing 
disease-associated miRNA biomarkers [18]. In this study, the 
POMA model was improved as follows:

The DE-miRNAs and DE-mRNAs in AML samples 
and healthy controls were identified using the Limma R 
package [26]. As a result, 35 miRNAs and 3565 genes that 
were differentially expressed were identified (p < 0.05).

The aberrantly expressed miRNAs were mapped 
onto the human miRNA-mRNA network and labelled as 
the AML miRNA-mRNA network1. A human miRNA-
mRNA network was constructed from experimentally 
validated data and computationally predicted data [16, 
18]. Then, the differentially expressed genes showing a 
reverse expression pattern from miRNAs were mapped 
to the AML miRNA-mRNA network1 to generate the 

pediatric AML-specific miRNA-mRNA network. That is, 
AML microRNA-mRNA network2 in Figure 1.

Based on the pediatric AML specific miRNA-mRNA 
network, NOD values and TFP were used to measure the 
probability that a given miRNA would have a regulatory role 
in AML. NOD is the number of genes targeted exclusively 
by a specific miRNA. TFP is the percentage of transcription 
factors among the target genes of a miRNA. miRNAs with 
significantly larger NOD values than those of the other 
microRNAs were selected (Wilcoxon test, p < 0.05); among 
these, the miRNAs with significantly larger TFP values were 
selected as the potential miRNA biomarkers (Wilcoxon 
test, p < 0.05). In this study, five miRNAs with significantly 
larger NOD were identified, and the top three miRNAs 
according to the TFP values were selected.

In vitro q-PCR confirmation of candidate AML 
microRNA biomarkers

The study included 34 children with AML and 30 with 
non-malignant disease aged 0–14 years. All samples were 
obtained from the bone marrow tissue bank of Children’s 
Hospital of Soochow University. Detailed information on 
the samples is listed in Supplementary Tables S2 and S3. 
Mononuclear cells (MNCs) were isolated and stored at 
−80°C prior to RNA extraction. Informed consent was 
obtained from each participating individual’s guardian. The 
study procedure was approved by the ethics committee of 
Children’s Hospital of Soochow University.

Real-time quantitative PCR (TaqMan) was used to 
validate the expression of selected miRNAs biomarkers 
in individual bone marrow samples. miRNA (ABI, USA) 
levels were normalized using U6SnRNA as an internal 
control.

Total RNA was extracted using the Trizol 
reagent (Invitrogen, China). RNA was quantified on 
a MULTISKAN GO Microplate Spectrophotometer 
(Thermo Scientific, China). Universal reverse transcription 
for miRNAs was performed using the GeneAmp PCR 
System 9700 according to the manufacturer’s instructions. 
The master mix for the cDNA synthesis contained 100 mM 
dNTP mix (0.15 μl), 50 U/μl MultiScribe RT enzyme 
(1 μl), 10 RT Buffer (1.5 μl), 20 U/μl RNase Inhibitor 
(0.19 μl), 5 TaqMan microRNA primers for each miRNA 
(3 μl) and nuclease free water up to 10 μl total volume; 
10 ng of total RNA was used. qRT-PCRs for microRNA 
measurements were performed using the Taqman PCR 
Universal PCR Master Mix II no UNG (ABI) on a 7500 
Real-Time PCR System (ABI). TaqMan miRNA assays 
(ABI) were used for detection of individual miRNAs using 
qRT-PCR according to the manufacturer’s instructions 
(ABI). Quantitative PCR was performed in a volume 
of 20 μl containing 1.33 μl of cDNA, 10 μl of Taqman 
PCR Universal PCR Master Mix II no UNG, 1 μl of each 
primer, and 7.67 μl nuclease-free water. Triplicates were 
performed for all qRT PCR reactions. All quantitative 
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PCR values were normalized to those of U6 snRNA. The 
relative expressions of three miRNAs were calculated 
using the 2−ΔΔCt method. Statistical analyses were 
performed using SPSS 18.0 and Graphpad Prism software. 
The statistical significance of differences between two 
groups was calculated using the Mann-Whitney U test 
and that between three groups was calculated using the 
Kruskal-Wallis test.

Functional analysis of target genes of candidate 
microRNA biomarkers

Enrichment analyses were performed using the 
MetaCore software from Thomson Reuters to examine 
the biological and functional relevance of miRNA target 
genes.

The threshold for significantly enriched pathways is 
p < 0.05 and FDR < 0.05. Each target gene was annotated 
by biological process in Gene Ontology.

ACKNOWLEDGMENTS AND FUNDING

This work was supported by National Natural 
Science Foundation of China grants (31470821, 91230117, 
31170795) and the National High Technology Research 
and Development Program of China (863 program, Grant 
No. 2012AA02A601)

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed. 

Author contributions

WY and LX contributed equally to the work. WY, 
ZS and YL performed the computational analyses. LX 
and SH did the in vitro q-PCR validation, WY, LX, JC, 
SH and BS wrote the main manuscript. BS conceived and 
supervised the work.

REFERENCES

1. Kaspers GJ, Creutzig U. Pediatric acute myeloid leukemia: 
international progress and future directions. Leukemia. 
2005; 19:2025–2029.

2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk 
stratification, and therapy of pediatric acute leukemias: an 
update. J Clin Oncol. 2011; 29:551–565.

3. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, 
Dworzak MN, Adachi S, de Bont E, Harbott J, Hasle H, 
Johnston D, Kinoshita A, Lehrnbecher T, Leverger G, 
Mejstrikova E, Meshinchi S, Pession A, Raimondi SC, et al. 
Diagnosis and management of acute myeloid leukemia in 
children and adolescents: recommendations from an inter-
national expert panel. Blood. 2012; 120:3187–3205.

4. Moore AS, Kearns PR, Knapper S, Pearson AD, 
Zwaan CM. Novel therapies for children with acute myeloid 
leukaemia. Leukemia. 2013; 27:1451–1460.

5. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mam-
malian mRNAs are conserved targets of microRNAs. 
Genome Res. 2009; 19:92–105.

6. Carleton M, Cleary MA, Linsley PS. MicroRNAs and cell 
cycle regulation. Cell Cycle. 2007; 6:2127–2132.

7. Shivdasani RA. MicroRNAs: regulators of gene expression 
and cell differentiation. Blood. 2006; 108:3646–3653.

8. Lindsay MA. microRNAs and the immune response. Trends 
Immunol. 2008; 29:343–351.

9. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 
2009; 4:199–227.

10. Gong JN, Yu J, Lin HS, Zhang XH, Yin XL, Xiao Z, 
Wang F, Wang XS, Su R, Shen C, Zhao HL, Ma YN, 
Zhang JW. The role, mechanism and potentially therapeu-
tic application of microRNA-29 family in acute myeloid 
leukemia. Cell Death Differ. 2014; 21:100–112.

11. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, 
Muller-Tidow C, Bohlander SK, Tenen DG, Behre G. 
 Cell-cycle regulator E2F1 and microRNA-223 comprise 
an autoregulatory negative feedback loop in acute myeloid 
leukemia. Blood. 2010; 115:1768–1778.

12. Gao XN, Lin J, Gao L, Li YH, Wang LL, Yu L. MicroRNA-
193b regulates c-Kit proto-oncogene and represses cell 
proliferation in acute myeloid leukemia. Leuk Res. 2011; 
35:1226–1232.

13. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, 
Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, 
Nakamura T, Flomenberg N, Marcucci G, Calin GA, 
Kornblau SM, Kantarjian H, Bloomfield CD, et al. 
MicroRNA signatures associated with cytogenetics 
and prognosis in acute myeloid leukemia. Blood. 2008; 
111:3183–3189.

14. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, 
Taganov KD, Nicoll J, Paquette RL, Baltimore D. Sustained 
expression of microRNA-155 in hematopoietic stem cells 
causes a myeloproliferative disorder. J Exp Med. 2008; 
205:585–594.

15. Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, 
Chaplin T, Andrew Lister T, Young BD, Debernardi S. 
Distinctive patterns of microRNA expression associated 
with karyotype in acute myeloid leukaemia. PLoS One. 
2008; 3:e2141.

16. Chen J, Zhang D, Zhang W, Tang Y, Yan W, Guo L, 
Shen B. Clear cell renal cell carcinoma associated 
microRNA expression signatures identified by an integrated 
bioinformatics analysis. J Transl Med. 2013; 11:169.

17. Huang J, Sun Z, Yan W, Zhu Y, Lin Y, Chen J, Shen B, 
Wang J. Identification of microRNA as sepsis biomarker 
based on miRNAs regulatory network analysis. Biomed Res 
Int. 2014; 2014:594350.



Oncotarget26435www.impactjournals.com/oncotarget

18. Zhang W, Zang J, Jing X, Sun Z, Yan W, Yang D, Guo F, 
Shen B. Identification of candidate miRNA biomarkers 
from miRNA regulatory network with application to pros-
tate cancer. J Transl Med. 2014; 12:66.

19. Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. 
Integrative network analysis reveals active microRNAs 
and their functions in gastric cancer. BMC Syst Biol. 
2011; 5:99.

20. Li Y, Xu J, Chen H, Bai J, Li S, Zhao Z, Shao T, Jiang T, 
Ren H, Kang C, Li X. Comprehensive analysis of the func-
tional microRNA-mRNA regulatory network identifies 
miRNA signatures associated with glioma malignant pro-
gression. Nucleic Acids Res. 2013; 41:e203.

21. Alshalalfa M, Bader GD, Goldenberg A, Morris Q, 
Alhajj  R. Detecting microRNAs of high influence on pro-
tein functional interaction networks: a prostate cancer case 
study. BMC Syst Biol. 2012; 6:112.

22. Delfino KR, Rodriguez-Zas SL. Transcription factor-
microRNA-target gene networks associated with ovarian 
cancer survival and recurrence. PLoS One. 2013; 8:e58608.

23. Zhang HM, Kuang S, Xiong X, Gao T, Liu C, Guo AY. 
Transcription factor and microRNA co-regulatory loops: 
important regulatory motifs in biological processes and dis-
eases. Brief Bioinform. 2013.

24. Daschkey S, Rottgers S, Giri A, Bradtke J, Teigler-
Schlegel A, Meister G, Borkhardt A, Landgraf P. 
MicroRNAs distinguish cytogenetic subgroups in pediatric 
AML and contribute to complex regulatory networks in 
AML-relevant pathways. PLoS One. 2013; 8:e56334.

25. Xu J, Haigis KM, Firestone AJ, McNerney ME, Li Q, 
Davis E, Chen SC, Nakitandwe J, Downing J, Jacks T, 
Le Beau MM, Shannon K. Dominant role of oncogene 
dosage and absence of tumor suppressor activity in Nras-
driven hematopoietic transformation. Cancer Discov. 2013; 
3:993–1001.

26. Smyth GK. limma: Linear Models for Microarray Data. 
Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S. 
Bioinformatics and Computational Biology Solutions 
Using R and Bioconductor: Springer New York. 
2005),pp. 397-420.

27. Zhu YM, Das-Gupta EP, Russell NH. Microsatellite insta-
bility and p53 mutations are associated with abnormal 
expression of the MSH2 gene in adult acute leukemia. 
Blood. 1999; 94:733–740.

28. Mao G, Yuan F, Absher K, Jennings CD, Howard DS, 
Jordan CT, Gu L. Preferential loss of mismatch repair func-
tion in refractory and relapsed acute myeloid leukemia: 
potential contribution to AML progression. Cell Res. 2008; 
18:281–289.

29. Hirano T. Chromosome cohesion, condensation, and sepa-
ration. Annu Rev Biochem. 2000; 69:115–144.

30. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, 
Nagata Y, Yoshida K, Okuno Y, Bando M, Nakato R, 
Ishikawa S, Sato-Otsubo A, Nagae G, Nishimoto A, 

Haferlach C, Nowak D, et al. Recurrent mutations in 
 multiple components of the cohesin complex in myeloid 
neoplasms. Nat Genet. 2013; 45:1232–1237.

31. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 
2000; 100:57–70.

32. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, 
Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, 
Rowley JD, Zeleznik-Le NJ. Regulation of mir-196b by 
MLL and its overexpression by MLL fusions contributes to 
immortalization. Blood. 2009; 113:3314–3322.

33. Wang Y, Li Z, He C, Wang D, Yuan X, Chen J, Jin J. 
MicroRNAs expression signatures are associated with lin-
eage and survival in acute leukemias. Blood Cells Mol Dis. 
2010; 44:191–197.

34. Diaz-Beya M, Brunet S, Nomdedeu J, Tejero R, Diaz T, 
Pratcorona M, Tormo M, Ribera JM, Escoda L, Duarte R, 
Gallardo D, Heras I, Queipo de Llano MP, Bargay J, 
Monzo M, Sierra J, et al. MicroRNA expression at diagno-
sis adds relevant prognostic information to molecular cat-
egorization in patients with intermediate-risk cytogenetic 
acute myeloid leukemia. Leukemia. 2014; 28:804–812.

35. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, 
Heerema N, Croce CM. Pre-B cell proliferation and lym-
phoblastic leukemia/high-grade lymphoma in E(mu)-
miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006; 
103:7024–7029.

36. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, 
Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, 
Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, 
Rajewsky K. Regulation of the germinal center response by 
microRNA-155. Science. 2007; 316:604–608.

37. Georgantas RW 3rd, Hildreth R, Morisot S, Alder J, 
Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI. 
CD34+ hematopoietic stem-progenitor cell microRNA 
expression and function: a circuit diagram of differentiation 
control. Proc Natl Acad Sci U S A. 2007; 104:2750–2755.

38. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, 
Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, 
Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, 
Bradley A. Requirement of bic/microRNA-155 for normal 
immune function. Science. 2007; 316:608–611.

39. Cammarata G, Augugliaro L, Salemi D, Agueli C, 
La Rosa M, Dagnino L, Civiletto G, Messana F, Marfia A, 
Bica MG, Cascio L, Floridia PM, Mineo AM, Russo M, 
Fabbiano F, Santoro A. Differential expression of specific 
microRNA and their targets in acute myeloid leukemia. Am 
J Hematol. 2010; 85:331–339.

40. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, 
Lowenberg B. MicroRNA expression profiling in relation to 
the genetic heterogeneity of acute myeloid leukemia. Blood. 
2008; 111:5078–5085.

41. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, 
Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, 
Haferlach T, Liso A, Diverio D, Mancini M, Meloni G, 



Oncotarget26436www.impactjournals.com/oncotarget

Foa R, Martelli MF, et al. Distinctive microRNA sig-
nature of acute myeloid leukemia bearing cytoplasmic 
mutated nucleophosmin. Proc Natl Acad Sci U S A. 2008; 
105:3945–3950.

42. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, 
Wang Y, Yan M, Qian Z, Neilly MB, Jin J, Zhang Y, 
Bohlander SK, Zhang DE, Larson RA, et al. Distinct 
microRNA expression profiles in acute myeloid leukemia 
with common translocations. Proc Natl Acad Sci U S A. 
2008; 105:15535–15540.

43. Luo X, Burwinkel B, Tao S, Brenner H. MicroRNA sig-
natures: novel biomarker for colorectal cancer? Cancer 
Epidemiol Biomarkers Prev. 2011; 20:1272–1286.

44. Li T, Leong MH, Harms B, Kennedy G, Chen L. 
MicroRNA-21 as a potential colon and rectal cancer bio-
marker. World J Gastroenterol. 2013; 19:5615–5621.

45. Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, 
Hur K, Yoo MW, Lee HJ, Yang HK, Kim VN. Functional 
links between clustered microRNAs: suppression of cell-
cycle inhibitors by microRNA clusters in gastric cancer. 
Nucleic Acids Res. 2009; 37:1672–1681.

46. Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 
regulates apoptosis by targeting Bim in human ovarian can-
cer. Oncol Rep. 2012; 27:594–598.

47. Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, 
Agarwal R, Paun BC, Jin Z, Olaru AV, Selaru FM, 
Hamilton JP, Yang J, Abraham JM, Mori Y, Meltzer SJ. 
The miR-106b-25 polycistron, activated by genomic ampli-
fication, functions as an oncogene by suppressing p21 and 
Bim. Gastroenterology. 2009; 136:1689–1700.

48. Li M, Guan X, Sun Y, Mi J, Shu X, Liu F, Li C. miR-92a 
family and their target genes in tumorigenesis and metasta-
sis. Exp Cell Res. 2014; 323:1–6.

49. Dacic S, Kelly L, Shuai Y, Nikiforova MN. miRNA expres-
sion profiling of lung adenocarcinomas: correlation with 
mutational status. Mod Pathol. 2010; 23:1577–1582.

50. Greif PA, Dufour A, Konstandin NP, Ksienzyk B, 
Zellmeier E, Tizazu B, Sturm J, Benthaus T, Herold T, 
Yaghmaie M, Dorge P, Hopfner KP, Hauser A, Graf A, 
Krebs S, Blum H, et al. GATA2 zinc finger 1 mutations 
associated with biallelic CEBPA mutations define a unique 
genetic entity of acute myeloid leukemia. Blood. 2012; 
120:395–403.


