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AbstrAct
We present a method for estimating the empirical dynamic treatment effect 

(DTE) curves from tumor growth delay (TGD) studies. This improves on current 
common methods of TGD analysis, such as T/C ratio and doubling times, by providing 
a more detailed treatment effect and overcomes their lack of reproducibility. The 
methodology doesn’t presuppose any prior form for the treatment effect dynamics and 
is shown to give consistent estimates with missing data. The method is illustrated by 
application to real data from TGD studies involving three types of therapy. Firstly, we 
demonstrate that radiotherapy induces a sharp peak in inhibition in a FaDu model. The 
height, duration and timing of the peak increase linearly with radiation dose. Second, 
we demonstrate that a combination of temozolomide and an experimental therapy in 
a glioma PDX model yields an effect, similar to an additive version of the DTE curves 
for the mono-therapies, except that there is a 30 day delay in peak inhibition. In the 
third study, we consider the DTE of anti-angiogenic therapy in glioma. We show that 
resulting DTE curves are flat. We discuss how features of the DTE curves should be 
interpreted and potentially used to improve therapy.

IntroductIon

A tumor growth delay (TGD) experiment is often 
the last step in preclinical cancer drug development. When 
a therapy that has shown efficacy in in vitro studies fails to 
repeat effects in a TGD study, we would like to know why. 
However, common methods for reporting results from 
TGD studies do not provide any information regarding 
mechanisms failure, because they merely provide an 
overall measure of efficacy of a therapy. Typical results 
do not provide any information as to what methods could 
be modified to improve efficacy. Here, we describe a new 
analysis method for TGD studies that can be used as an 
investigative tool, rather than just for screening.

Results from TGD studies often lack reproducibility 
[1]. One reason for lack of reproducibility is the use of 
single number summaries to capture the treatment effect. 

For instance, the value of the T/C ratio, a widely used 
measure, is strongly dependent on the time at which the 
ratio is calculated (Figure 1(a)-(b)).The comparison time 
depends on when tumor burdens from ‘most’ animals 
in the group are observable, which in turn, are driven 
by IACUC regulations. Due to inter animal variation 
in growth, this time can be subject to considerable 
randomness, causing lack of reproducibility. Another 
commonly used measure, tumor doubling time, is usually 
calculated using tumor volumes at two time points [2]. 
While doubling time does give consistent results under 
log-linear growth, which works for control tumors [3], 
consistency is lost under non-linear growth (Figure 1(c)-
(d)), which is typically seen in treatment arms. The time 
dependence of these single number summaries highlights 
the need for a time varying (dynamic) estimate of the 
treatment effect. 
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Where feasible, pharmacokinetic-pharmacodynamic 
(PK-PD) modelling can provide a ‘mechanistic’ 
understanding of drug effects on tumor growth [4]. 
However, such modelling is often based on assumptions 
about key rate parameters and/or requires measurement 
of a validated target inside the tumor [5], which can be 
quite expensive or difficult to obtain. This is particularly 
true when novel drugs, whose mechanism of action in vivo 
are as yet unknown, are considered. Other problematic 
situations include radiotherapy, where PK measurements 
aren’t meaningful or combination therapy, where again 
the operational target for PD isn’t clear. An alternative 
approach to analysis of TGD studies is by fitting curves 
to growth profiles. Various forms of curves, such as linear 
in dose [6], linear exponential mixtures [7] and recently, 
multi-phase growth models have been proposed [8, 
9]. While these models may fit the data quite well, one 
problem many of these models share is that the coefficients 
have limited biological interpretation [10]. Interpretability 
is key to understanding why a therapy does or does not 
work and how it might be improved. Another limitation 
of model based analysis is that it typically assumes a 
particular type of treatment effect. With novel therapies 
and combinations, we will see that the form of the 
treatment effect can be hard to predict. The holy grail in 
TGD modelling is therefore to develop a method that i) fits 
the data well for a wide variety of cancers and therapies 
without detailed knowledge of their mechanism of action  
and ii) provide results that are biologically interpretable 
and actionable.

Tumor growth under treatment can be thought of as 
the superposition of two processes: a) a growth process 
G(t), that occurs when tumors are untreated and b) an 
inhibition process or R(t), which is the treatment effect 
(Figure 2, equation (1.1)). The key idea of this paper 
is to estimate and interpret these two processes to gain 
insight into the treatment effect. The inhibition process 
can be estimated in this general form using methods 
for ‘nonparametric’ or ‘functional’ regression [11]. This 
allows us to examine the empirical dynamics of the 
treatment effect. As we shall see in the examples, the 
dynamics of the treatment effect reveal a lot more about 
the mode of action of a therapy than can be captured by 
any single summary measure. 

(1.1)

results

simulation experiment

The accuracy of the estimated treatment effects 
was assessed in a simulation experiment. TGD data 
were generated with n = 10 animals per treatment group, 

observed every third day over a period of 30 days. Data 
was generated from the general growth model (1.2). 
Each animal was assigned a random initial tumor volume 
Vi(0) by sampling from a log normal distribution with 
mean 100 mm3 and SD 20 mm3. Measurement error εi 
followed a Gaussian distribution with zero mean and 
SD 20 mm3. Data were censored if the observed tumor 
volumes Vi(t) fell below 20 mm3 or exceeded 2000 
mm3. The control growth rate λi was sampled from a 
Gaussian distribution with mean 14%/day and SD 2%/
day. The ‘true’ treatment effect curve was of the form 

, with peak location 
µ sampled from a Gaussian distribution with mean 
20 days and SD 2 days, duration σ sampled from a 
Gaussian distribution with mean 10 days and SD 1 day. 
Two different values of scale were used i) a = 5, which 
generated some shrinkage followed by regrowth (Figure 
4a) ii) a = 15, which led the tumor to become unobservable 
followed by occasional regrowth (in other cases the tumor 
vanished) (Figure 4c). The values used for the simulation 
produce growth profiles typical for real TGD studies. 

The average growth rate in the control group 
was estimated by fitting a linear mixed model to the 
log volumes [7] as λ= 0.13, with an SD of 0.02 across 
animals. For the moderate shrinkage data in Figure 4(a), 
we used the non-parametric estimate given in equation 
(1.5). Although the peak is well estimated, there appears 
to be some bias beyond 50 days (Figure 4(b)), because 
the growth curves are all censored by that point (Figure 
4(a)). For the high shrinkage data in Figure 4(c), using the 
non-parametric estimate gives a highly biased estimate of 
the treatment effect, due to the heavy censoring present 
in this dataset. By contrast, the EM algorithm gives an 
approximately unbiased estimate of the treatment effect 
(Figure 4(d)). 

radiation therapy study

Radiation therapy is a commonly used treatment for 
head and neck cancer. Here we consider data from a study 
involving FaDu xenografts transplanted into nude mice.
This xenograft was derived from a patient with head and 
neck cancer [23] . When tumor volumes reached 200-300 
mm3, mice were randomized into 6 radiation treatment 
groups, with between n = 8-11 animals/group. Radiation 
fractions at doses ranging from 0 Gy (control) to 10 Gy 
were administered on 5 consecutive days. Tumors were 
measured daily with calipers, and volumes were calculated 
using the formula V=(A2xBxπ)/6, where A is the shortest 
diameter and B is the longest diameter. Mice were 
sacrificed when their tumor reached 1500 mm3 (Figure 5). 
The standard method for analyzing dose escalation studies 
is a dose response curve, whereby the tumor control 
probability is modelled as a function of dose [24]. From 
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Figure 1: sensitivity of common summary measures to time. a. Log-linear tumor growth curves for data in control (C) and treated 
(T) group with a growth rate of 20%/day and 10%/day respectively b. The time dependence of the T/C ratio for curves in a. c. A non-linear 
tumor growth curve d. Time dependence of doubling time (DT), calculated using two observations from the curve in c., using the formula 
DT = log(2)/(log(V(t)) - log(V(0)). 

Figure 2: superposition of two processes governing tumor growth dynamics: uncontrolled growth + inhibitory 
treatment effect lead to observed tumor growth delay (tGd) curves. The goal is to estimate the dynamic treatment effect curve 
from observed TGD curves in treated and untreated animals.
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Figure 4: results from simulation experiment. a. Tumor growth profiles from a two armed study. Each line represents an animal. 
b. Animalwise and average inhibition rates estimated from the data in a. , obtained using the non-parametric (model free) method. The 
treatment effect curve is obtained by subtracting the growth rate in the control group from the average inhibition curve. c. Tumor growth 
profiles from a treatment group showing large tumor shrinkage with occasional regrowth. The control arm is the same as in a.. d. Animalwise 
and average inhibition rates estimated from the data in c) obtained using the Gaussian scaled density model, obtained via the EM algorithm 
to account for censored data. The average treatment effect obtained from non-parametric estimation, which doesn’t take censoring into 
account, is also shown for comparison. 

Figure 3: a. Features of a treatment effect curve b. Example of the use of the EM algorithm for estimation with censored data, using a 
scaled Gaussian density as model for the treatment effect curve. The black line shows a ‘true’ growth curve, whereby the tumor shrinks 
considerably before growing again. Tumor volumes below 20 mm3 were not palpable and these observations are set to 20 mm3. The green 
line shows the estimated growth curve by fitting a smoothing spline using the recorded data. The EM algorithm (red line) imputes data 
values for observations below 20 mm3. Successive iterates (colored on a graduated scale from red-orange-yellow) from the EM algorithm 
improve upon the estimated growth curve to come quite close to the true value by the 1000th iteration. 
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the fitted curve, we find that the TCD50 dose (the radiation 
dose that controls 50% of the tumors) is 9.3 Gy with a 
standard error of 0.03 Gy and the steepness of the curve is 
3.62 (SE = 0.33) (Figure 6(a)). What additional insight can 
be gained from dynamic treatment effect curves? 

The rate of growth in the control group was 13%/
day with an SD of 2%/day across animals. Animalwise 
dynamic treatment effect (DTE) curves were obtained 
using the non-parametric or model based methods, 
depending on the extent of missing data (Figure 5), and 
then averaged across animals. Average DTE curves for all 
treatments exhibit a single peak, with peak size appearing 
to increase with dose (Figure 6(b)). We also observe that 
although the treatment effect is substantially diminished 
by 30 days, growth is still inhibited beyond this point, i.e. 
the regrowth rate is slower than the rate of control growth, 
as previously demonstrated in [25]. Next we characterized 
the DTE curves in terms of their salient features, namely 
peak height, peak location, duration (Figure 3a) as well 
as mean AUC, which represents the area under the curve 
per day of observation. We found a significant increasing 
trend in the peak height with dose at 5%/day/Gy (p-value 

= 0.001), from 15%/day at 5 Gy to 40%/day at 10 Gy 
(Figure 6(c)). Similarly there was an increasing trend in 
peak location, with a delay of about 2days/Gy (p-value = 
0.02) from 10 days at 5 Gy to 20 days at 10 Gy (Figure 
6(d)). Duration ranged from 10 days at 5 Gy to 21 days at 
10 Gy. The trend in duration was marginally significant 
at 2.2 days/Gy (p-value = 0.05), although the duration at 
5 Gy appears to be lower (2.9 days) than the rest (Figure 
6(e)). There was no significant trend in mean AUC (mean 
= 12.3%/day, SD = 3%/day, p-value for trend = 0.08), 
although the mean AUC at 5 and 6 Gy appears to be lower 
than the rest (Figure 6(f)).

combination therapy

Combination therapy is quite common in cancer 
treatment, particularly when no single therapy is successful 
for a particular type of cancer. Here we consider a four 
armed experiment (n = 9 animals per group) on a patient 
derived high grade glioma xenograft . Apart from a control 
arm, the study had an arm treated with temozolomide, 

Figure 5: Animalwise tumor growth profiles for a dose escalation study using FaDu xenografts receiving varying levels 
of fractionated radiation therapy, between 0 -10 Gy/day for days 1-5. There were between 8 - 11 animals per treatment group. 
The x axis is time in days, while the y axis is log tumor volume (mm3) for all plots. Axes labels are omitted for better resolution of curves. 
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Figure 6: a. Dose response curve fitted to the empirical tumor control probability. The dashed vertical line indicates the TCD50 dose 
at 9.3 Gy. b. Estimated dynamic treatment effect curves for each arm of radiation therapy study, obtained from data in Figure 5. c.- f. 
Characteristics of treatment effect curves, as a function of dose. Lines shows fitted trend. c. Peak heights c. Peak location d. Peak duration 
f. Mean Area under the curve. 
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which is a standard therapy for glioma, on the first 5days 
at 25mg/kg IP, a third arm treated with an experimental 
drug which inhibits the BMI1 gene, which is a target to 
prevent tumor self-renewal [26], at maximum tolerated 
dose (MTD) PO twice weekly x 5, an and a fourth arm 
treated with combination of the two agents given at same 
doses and schedules.

The average rate of growth in the control group 
was 10.7%/day, with an SD of 4%/day across animals. 
Temozolomide inhibition peaked at day 28 (Table 1), but 
after day 50, tumors regrew at an average rate almost as 
fast as the control rate (Figure 7 (e)). The BMI1 inhibitor 
had lower peak inhibition than temozolomide, but the 
duration of BMI1 inhibitor (53 days) is substantially 
greater than that for temozolomide (32 days). For the 
combination therapy, if the effect of the treatments were 
‘additive’, we would expect to see an inhibitory effect 
which is the sum of the DTE curves for the two mono-
therapies, i.e. the sum of the red and green curves, shown 
in Figure 7(e) as the light blue curve. The actual effect of 
the combination therapy (dark blue curve) is similar to the 
hypothesized additive effect in terms of peak inhibition, 
duration and mean AUC (Table 1), however the location 
of the peak (56 days) is substantially delayed from what 
was hypothesized (24 days).

Anti-angiogenic therapy

Anti-angiogenic therapies act by restricting 
blood supply to the tumor, thus reducing tumor growth. 
Bevacizumab is an anti angiogenic agent FDA approved 
for treatment of recurrent gliobastoma. Here we consider 
data from 6 studies, each with two arms and n = 10 
animals/arm, one control and the other treated with 5mg/
kg of Bevacizumab twice weekly x 5 weeks (Figure 8). 
Tumors in each study were derived from tumor tissue from 
a different patient with glioma.

 Growth rates in the control arm ranged between 
5.4 %/day to 20.1%/day (Table 2). The estimated 
treatment effect curves were approximately flat for all 6 
studies, indicating a relatively constant rate of inhibition 
throughout the study (Figure 9). Peak growth rates in the 
treated arm were negative across studies, implying that on 
average no tumor shrinkage took place at any point in the 
study. As might be expected, tumors in studies exhibiting 
lower growth rates lasted longer (Figure 8). 

dIscussIon

We have demonstrated that the treatment effect 
for some common types of cancer therapy show a strong 
non-linear time dependence, which we can estimate via 
the methodology proposed in this paper. The dynamic 
treatment effect (DTE) curve typically provides more 
insight than summary statistics. For instance, we have 
learned that the inhibitory effect of radiation therapy 
displays a prominent peak whose timing increases from 
10-20 days with radiation dose in the FaDu cell line. In 
addition, peak inhibition and duration also increases 
linearly with higher doses of radiation therapy. By 
contrast, the DTE of Bevacizumab treatment in glioma 
is qualitatively different: the curve is relatively flat, 
indicating an approximately constant rate of inhibition for 
the duration of the study. The relatively unexpected nature 
of the delayed effect for the combination therapy in glioma 
suggests that an empirical analysis, as proposed here, 
should be a first step before developing a mechanistic 
model. 

The shape of the DTE curve indicates the mode of 
action of a therapy. Curves with positive peaks indicate a 
cytotoxic therapy. Flat curves suggest a cytostatic mode of 
action. The shape of the DTE can potentially be exploited 
to improve the efficacy of a therapy. For instance, if the 
peak of the DTE curve is too low to cause tumor shrinkage, 
this might suggest that a higher dose might be required. 
On the other hand, if the duration of the treatment curve is 
small, especially if the treatment effect vanishes soon after 
therapy administration is stopped (such as temozolomide 
in the combination study), this might suggest that a longer 
period of therapy is necessary. 

In simulation experiments, we have demonstrated 
that it is possible to obtain a reasonably accurate estimate 
of the DTE curve with as few as n = 10 animals/group, 
which is reasonable for xenograft studies. Even in 
situations where data is heavily censored, we have 
demonstrated it is possible to obtain a consistent estimate 
using model based imputation via the EM algorithm. More 
work is required to exhaustively characterize the types of 
scenarios where consistency is maintained and to improve 
efficiency of estimates, e.g. using a mixture modelling 
approach for curves [27]. Although the treatment effect 
curve derived here is based on the assumption of log-
linear growth in untreated tumors, the methodology can 
be extended to more general modes of growth in untreated 

table 1: Features of dte curves for combination therapy study.

therapy Peak inhibition
(% vol/day)

Peak location
(day) duration Auc

Temozolomide 0.16 28 32 0.051
BMI Inhibitor 0.11 24 53 0.064

‘BMI Inhibitor + Temo’ 0.27 24 38 0.115
Combination 0.24 56 49 0.095
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Figure 7: a.-d. Tumor growth profiles for a 4 arm study of patient derived glioma xenograft involving monotherapies of temozolomide 
and an experimental BMI1 as well as the combination of the two. The dashed vertical lines denote end of treatment. e. Estimated DTE 
curves for each treatment arm, as well as a hypothetical curve BMI1 inhibitor + Temo, representing the addition of the two mono-therapy 
DTEs. 
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tumors, although the estimation and interpretation of 
effects will become more complex. In keeping with the 
philosophy that the effect size is more important than 
its significance in xenograft trials [28], we have omitted 
statistical inference from this paper. Nevertheless, it is 

possible to test hypotheses, estimate confidence intervals 
etc. for either features derived from the DTE curve or 
the entire curve itself using methods of functional data 
analysis [16]. For more efficient inference, it may often be 
possible fit a parametric model whose choice is guided by 

Figure 8: data from a set of 6 two armed trials. Black arm is control (no treatment). Red arm is Bevacizumab mono therapy. Each 
study used xenografts derived from a different patient with glioma. The x-axis is time (days) and the y-axis is log tumor volume. The 
vertical green dashed line represents end of therapy. 

table 2: summary of growth and inhibition rates in bevacizumab study.

PDX ID control growth rate 
(%/day)

sd in growth rate 
across animals  

(%/day)
Inhibition effect of 

Avastin (%/day)

1 13.4 1.9 3.8
2 20.1 3.8 12.8
3 16.3 2.6 11.1
4 7.5 3.0 4.9
5 5.4 2.2 2.5
6 15.0 4.1 2.9

Mean 13.0 2.9 6.6
SD 5.5 4.5
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the shape of the DTE curve. 

MAterIAls And Methods

estimating the dynamic treatment effect (dte) 
curve

Over the entire range from inception to maturity, 
tumor growth in mice is well modelled by a sigmoid 
curve [12]. In typical xenograft experiments, however, 
we only get to observe the ‘middle’ of this sigmoid curve, 
which represents the fast growth phase. For a wide range 
of tumors, untreated tumor growth is this phase is well 
approximated by log-linear growth [3]. In addition, the 
measurement error of the tumor volume is approximately 
additive on the log scale [8]. With these assumptions, we 
can model the log tumor volume as:

 (1.2)

Where Vi(t) is the tumor volume of the i-th mouse 
at time t, λi is the growth rate of the i-th tumor, assumed 
to be a random sample from a Gaussian distribution with 
mean λ and SD σε , R(t) is the cumulative inhibition and 
ε(t) is measurement error, assumed to have a Gaussian 
distribution with mean 0 and SD σε. Our goal is to recover 
the time effect curve, which is the instantaneous effect 

of the therapy of tumor growth, given by ( ) ( )'r t R t= , the 
rate of change, or derivative of the cumulative inhibition 
function, given the observed TGD data. Note that while 
the treatment effect may also have a random subject 
specific component, it is not possible to separate this from 
the random effect in the growth process, as they can cancel 
each other out. For identifiability, we therefore assume the 
treatment effect to be fixed. We use the penalized least 
squares criterion Li to estimate the cumulative tumor 
growth function f :

(1.3)

Figure 9: estimated rates of control growth and inhibition due to bevacizumab treatment, derived from the data in 
Figure 8.
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The first term on the right hand side of is the 
measure of how well the model fits the data (goodness of 
fit), while the second term measures the ‘roughness’ of the 
growth function, as measured by the integral of the square 
of the second derivative. By this metric, a linear function 
(straight line, as expected under control) will have a 
second derivative of 0, hence a roughness of 0 (minimum 
possible value). By contrast, a function that ‘wiggles’ a lot, 
i.e. twists and turns, will have a high roughness value. The 
smoothness parameter controls the tradeoff between the 
goodness of fit to the data and roughness. The function îf  
which minimizes Li with over all possible ‘smooth’ growth 
functions f is a smoothing spline which can be calculated 
from the data [13]. The derivative of this spline estimate, 
which we denote by 

'
îf , is also an estimate of f’ (t), the 

instantaneous rate of tumor growth. In fact the estimated 
rate of tumor growth approximates the true rate function 
with an upper error bound dependent on T , the number of 
timepoints at which the tumor is observed and r = (p – 1)/
(2p + 1) [14]. The parameter p is a measure of smoothness 
of the tumor growth function f, usually quantified by the 
highest order derivative with a finite mean squared error 

value, i.e. 
( ) 2

E pf < ∞
 [15]. Using this approximation 

property and the form of the tumor growth function given 
in (1.2), we can write: 

( ) ( ) ( )'ˆ r
i if t r t O T −= λ − + (1.4)

where r (t)= R’ (t) is the instantaneous rate of 
inhibition, also known as the ‘time effect curve’. 
Averaging this rate estimate across animals i = 1,…, n 

gives us:  
( ) ( ) ( ) ( )' 1

1

ˆ'
n

r
i

i
f t f t r t n O T− −

=

= = λ − +∑
(1.5)

Where 1
in−λ = λ∑  is the average growth rate of 

untreated tumors, which can typically be estimated from 
the control arm of the study. We can therefore obtain 
an estimate of the time effect curve of a treatment as 

( ) ( )ˆ 'r t f t= λ − . From (1.5), the accuracy of this estimator 
depends both on the number of animals receiving this 
particular treatment as well as the number of timepoints 
at which they are measured. For comparability, the same 
value of the smoothness parameter v is used for all animals 
in a study [16]. In results, we demonstrate methodology 
the accuracy of this estimate via a simulation experiment. 

Additivity of combination studies

There is much recent interest in combining modern 
targeted therapies to overcome resistance to mono-
therapies [17, 18]. It is therefore useful to have a method 
for assessing which combinations provide added benefit 
over single therapies. The generalized tumor growth 
model (1.2) allows a natural definition of additivity of 

combination therapy if ( )( ) ( )( ) ( )( )1 2combf r t f r t f r t= +
, where r1(u), r2(u) and rcomb(u) are the time effect curves 
for two monotherapies and the combination therapy 
respectively. The function f is some feature of the curve, 
such as Peak = max r(t) or area under the curve (AUC) = 

( )r u du∫ . This concept of additivity has been previously 
used in the context of a specific model of tumor growth 
[19]. Extending this concept, a combination therapy is 

synergistic if ( )( ) ( )( ) ( )( )1 2combf r t f r t f r t> + , sub-additive 

if ( )( ) ( )( ) ( )( )1 2combf r t f r t f r t< +  
and antagonistic if 

( )( ) ( )( ) ( )( ){ }1 2max ,combf r t f r t f r t< . 

Analysis of censored data

A common problem with fitting curves to TGD 
data is that chunks of it are often missing, because the 
tumor volume is smaller than the observable limit or 
exceeds the upper allowable threshold (Tan et al. 2002). 
Ignoring the missing data can lead to bias, which could 
be positive or negative depending on the nature of the 
missing data [6],[20]. We have therefore developed a 
method of handling missing data using the expectation- 
maximization (EM) algorithm, based on a flexible model 
for the treatment effect curve. The model is based on a 
Gaussian shape, which requires a peak location (µ), peak 
height (a) and peak duration (σ) (Figure 3(a)). This model 
is used in an iterative expectation maximization (EM) 
algorithm [21] to obtain maximum likelihood estimates of 
the growth curve, with the iterated steps being: 

e-step: Obtain a ‘complete version’ of the tumor 
growth curve by supplementing the observed data with the 
model fitted values (where data was missing).

M-step: Update the model parameters by fitting it 
to the current version of the ‘complete’ curve using non-
linear least squares.

Convergence of the EM algorithm can be slow 
[22], so we have chosen to stop it after 1000 iterations. 
Convergence was not very sensitive to choice of starting 
value (Figure 3(b)), however the embedded non-linear 
least squares algorithm can fail to converge for certain 
parameter combinations. If this happens, a modified 
starting guess is necessary. 
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