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AbstrAct
The enumeration of circulating tumor cells (CTCs) in peripheral blood correlates 

with clinical outcome in castration-resistant prostate cancer (CRPC). We analyzed 
the molecular profiling of peripheral blood from 43 metastatic CRPC patients with 
known CTC content in order to identify genes that may be related to prostate cancer 
progression. Global gene expression analysis identified the differential expression 
of 282 genes between samples with ≥5 CTCs vs <5 CTCs, 58.6% of which were 
previously described as over-expressed in prostate cancer (18.9% in primary tumors 
and 56.1% in metastasis). Those genes were involved in survival functions such as 
metabolism, signal transduction, gene expression, cell growth, death, and movement. 
The expression of selected genes was evaluated by quantitative RT-PCR. This 
analysis revealed a two-gene model (SELENBP1 and MMP9) with a high significant 
prognostic ability (HR 6; 95% CI 2.61 - 13.79; P<0.0001). The combination of the 
two-gene signature plus the CTCs count showed a higher prognostic ability than CTCs 
enumeration or gene expression alone (P<0.05). This study shows a gene expression 
profile in PBMNC associated with CTCs count and clinical outcome in metastatic CRPC, 
describing genes and pathways potentially associated with CRPC progression.

INtrODUctION

Prostate cancer (PC) is the second leading cause of 
death from cancer in men [1]. During the progression of 
the disease, subgroups of cancer cells reach the circulation 
and are able to proliferate in distant tissues [2].

Interest has been growing in recent years about 
circulating tumor cells (CTCs) as leaders in the metastatic 
process. Because of its great accessibility, the expression 

profile of peripheral blood is of interest for determining 
molecular alterations that may justify a more aggressive 
clinical behavior in patients with higher CTCs count. 
Studies mostly have focused on the capability of CTCs 
as biomarkers but also their potential utility in diagnosis, 
prognosis, and as a marker of treatment effectiveness [3]. 
These studies are supported by technologies that allow the 
reproducible detection and quantification of CTCs. These 
cells can be separated from other hematopoietic cells 
by physical characteristics such as size and shape, or by 
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biological characteristics such as expression of epithelial 
or cancer-specific markers. The CellSearch System 
(Veridex, LLC) is the most widely used CTC-isolation 
technology in clinical testing. This semi-automated 
method received U.S. Food and Drug Administration 
approval for the enumeration of CTCs in whole blood [4, 
5]. In castration-resistant PC (CRPC), the quantification 
of CTCs by CellSearch system has been proved to be 
clinically relevant. Studies have used this technology to 
define groups with unfavorable and favorable prognosis 
among patients with metastatic prostate cancer [6] and 
for molecular studies of CTCs [6-10]. Furthermore, 
the decline in the number of CTCs under treatment is a 
stronger prognostic factor for post-treatment survival 
than a 50% decline in prostate-specific antigen (PSA) 
[11]. However, the detection of CTCs by the expression 
of epithelial specific markers, may have as a consequence 
that CTCs with different molecular characteristics cannot 
be detected. 

In addition to CTCs, non-tumoral epithelial and 
circulating hematopoietic cells may also be involved in 
tumor progression [12]. Indeed, two recently published 
studies described transcriptional profiles in peripheral 
blood associated with prognosis in patients with CRPC 
[13, 14].

The detection of tumor or epithelial markers by 
reverse-transcriptase polymerase chain reaction (RT-
PCR) in the mononuclear cell fraction of peripheral blood 
(PBMNC) have been widely use as a strategy to detect 
CTCs in patients with cancer [15]. In the present work 
we describe a transcriptional profile associated with CTCs 

count in the PBMNC of patients with metastatic CRPC 
and molecular pathways that may be associated with 
CRPC progression. Notably, most of the detected genes 
in patients with ≥5 CTCs were previously described as 
over expressed in PC, and specifically 56.1% were over-
expressed in PC metastasis. RT-PCR expression of two 
genes, SELENBP1 and MMP9, together with the CTC 
count showed a significant prognostic ability in CRPC 
patients. Overall, our findings support that expression 
studies in PBMNC in metastatic CRPC patients may 
translate the biology of the CTCs and may be used to 
identify patients with a more aggressive clinical behavior.

rEsULts

Patients and ctcs count

Seventy-four patients were included in the study. 
Four of them were excluded from the analysis: one patient 
that did not accomplish the inclusion criteria and three 
samples that failed the quality control were discarded for 
being analyzed. The clinical characteristics of the 70 final 
patients are shown in Table 1. Patients were prospectively 
followed from the time of inclusion in the study.

PBMNC from 43 patients were tested for CTC count 
and microarrays analysis. All the 70 samples were studied 
by qRT-PCR. Clinical characteristics between patients 
with ≥5 CTCs and <5CTCs were well balanced (Table 1).

The median number of CTCs per patient sample 
was 59 (range 1-899). Specifically, 23 patients (53.4%) 

Figure 1: survival analysis according to ctc count. A) Kaplan-Meier curves that estimate the probabilities of overall survival 
(OS) of CRPC patients with <5 and ≥5 CTCs. The log-rank test was used to assess the statistical difference between the two groups 
(P<0.001); B) Receiver operating characteristic (ROC) curve for prediction accuracy of ≥5 CTCs content in OS of CRPC.
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presented <5 CTCs (average 1 cell) and 20 patients 
(46.5%) had ≥5 CTCs (average 126 cells). During a 
median follow-up period of 12 months, 32 of the 43 
patients (74.4%) died. Univariate Cox proportional 
hazards regression analysis assessed the number of CTCs 
as a risk factor for overall survival (OS). Patients with 
<5 CTCs had longer survival relative to patients with ≥5 
CTCs by log-rank analysis (Cox HR 5.5; 95%CI, 2-15.3; 
log-rank P<0.001) (Fig. 1A). The predictive accuracy of 
the number of CTCs (≥5 CTCs vs <5 CTCs) for OS was 

assessed by the ROC curve (area under curve=0.790) (Fig. 
1B). 

Gene expression profiling in peripheral blood 
mononuclear cells is associated with CTC count 

Hierarchical clustering and principal component 
analysis algorithms were used to examine the sample 
groupings in the expression data. Expression profiles 

Table 1: Clinical characteristics of patients and CTC count; 1CTCs: circulating tumor cells; 2PSA: prostatic specific 
antigen; 3AP: Alkaline phosphatase; 4LDH: Lactate dehydrogenase; 5“events” refer to number of deaths.

Patients' characteristics

ctc1 load <5 ctcs ≥5 CTCs ctcs non-eval total

Number of patients 23 20 27 70
Age (years)     

Median (range) 72 (40.1-78.3) 73.5 (49-83) 67.5 (51-79.8) 66.5 (40.1-83.1)
Gleason N (%)

≤ 7 9 (39.1) 7 (35) 13 (48.3) 29 (41.5)
8-10 12 (52.2) 10 (50) 12 (44.4) 34 (48.6)

Unknown 2 (9) 3 (15) 2 (7.4) 7 (10)
PSA2 (ng/mL) 

Median (range) 24.3 (1.3-1,375) 40.4 (1.8-1,002) 47.5 (1.8-445.6) 57.9 (1.3-1,375)
AP3 (U/L) 

Median (range) 180.5 (71-679) 401 (121-5797) 265 (91-1143)  253 (71-5797)
LDH4 (U/L) 

Median (range) 408 (253-628) 588 (336-1569) 351 (232-604) 408 (232-1569)
Hemoglobin (g/dL) 

Median (range) 127 (86-153) 112.5 (74-144) 129 (96-156) 127 (74-156)
Previous chemotherapy (%)

Yes 9 (39.1) 7 (35) 6 (22.2) 22 (31.4)
No 14 (60.9) 13 (65) 21 (77.8) 48 (68.6)

Metastasis
Bone 18 (46.1) 20 (64.5) 22 (51.2) 60 (53.1)

Visceral 5 (12.8) 1 (3.2) 7 (16.3) 13 (11.5)
Lymph nodes 15 (38.5) 10 (32.3) 12 (27.9) 37 (32.7)
Local relapse 1 (2.6) 0 2 (4.7) 3 (2.7)

CTC number (%)
0-2 20 (46.5) - - -
3-4 3 (6.9) - - -
5-20 - 6 (13.9) - -
21-50 - 9 (20.9) - -
>51 - 5 (11.6) - -

Follow-up (months)     
Median (range) 12 (1.9-36.8) 12.23 (1.2-35.3) 12 (3.3-26.2) 12 (1.2-36.8)

Number of events5 (%) 14 (60.9) 18 (90) 4 (14.8) 36 (51.4)
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Table 2: Genes differentially expressed between ≥5 CTCs and <5 CTCs and also between primary tumor/metastasis 
and normal prostate tissue according to previous data in the literature [16];*qRT-PCR validated genes.

Over-expressed in metastasis vs primary tumor Over-expressed in primary 
tumor vs normal prostate tissue Over-expressed in metastasis vs normal prostate tissue

Gene symbol Gene symbol Gene symbol
ABCA13* HBD SIGLEC14 AGAP1 ABCA13* ESCO2 OLR1
ABCC13 HEPACAM2 SLC22A16 ANKRD18A ABCC13 FAM151B OR2W3
AFF2 HIST1H1B SLC25A39 BUB1B AGAP1 FAM20A OR6N1
AHSP HIST1H3B SLC26A8 C15orf42 AHSP FAR2 OSBP2
ALAS2 HIST1H3G SLC4A1 C17orf66 ALAS2 FCAR PADI4
ANK1 HLX SLC6A8 CASC5 ANK1 FCRL6 PGLYRP1
ANLN HMBS SOX6 CCDC125 ANLN FOLR3 PHOSPHO1
ASPM IFIT1B SPTA1 CCNB2 ARG1 FOXM1 PLK1
AZU1 INHBA SPTB CCNE2 ASPM GLRX5 PPEF1
BCL2L15 KEL SYTL2 CCRN4L AZU1 GNLY PRC1
BMX KIAA0101 TCL1A CD24 BCL2L15 GPR160 PRR13
BPI KIF11 TCN1 CEACAM3 BMX GPR84 PRTN3
BUB1 KIF14 TNFAIP6 CENPF BPI GPR97 PTGDR
BUB1B KIF15 TOP2A CHI3L1 BUB1 GYPA PTH2R
C15orf42 KIF20A TPX2 CHIT1 BUB1B GZMH PVALB
C17orf66 KIF23 TRBV28 CKAP2L C15orf42 HBD RAP1GAP
C19orf59 KLRD1 TYMS CLEC5A C15orf54 HBM RETN
C19orf77 LOC285696 UHRF1 CRISP2 C17orf66 HEPACAM2 RHAG
CAMK2N1 LRRC4 YOD1 CRISP3* C19orf59 HIST1H1B RRM2
CAMP LRRN1 ZNF788 DLGAP5 C19orf77 HIST1H3B RUNDC3A
CASC5 MGAM ERG* CA1 HIST1H3G S100P
CCNA2 MKI67 FAM151B CAMP HLA-DRB5 SERPINB10
CCNB2 MLNR FOXM1 CASC5 HLX SERPINB2
CCNE2 MMP8* FZD5 CCNA2 HMBS SIGLEC14
CD160 MMP9* GCA CCNB2 HP* SIGLEC5
CDK1 MPO GPR160 CCNE2 HPR* SLC22A16
CEACAM3 MS4A3 GPR84 CCRN4L HTRA3 SLC25A39
CEACAM4 MYL4 GZMH CD160 IFIT1B SLC26A8
CEACAM8 MYO6 HIST1H3B CD3G INHBA SLC27A2
CENPF NLRC4 HP* CDK1 KEL SLC28A3
CIT NUSAP1 HPR* CEACAM3 KIAA0101 SLC4A1
CKAP2L OR2W3 ICA1 CEACAM4 KIF11 SLC6A8
CRISP2 OR6N1 KIF11 CEACAM8 KIF14 SLC6A9
CTSG OSBP2 KIF20A CENPF KIF15 SOX6
CYP4F3 PADI4 MBOAT2 CHI3L1 KIF20A SPTA1
DEFA4 PGLYRP1 MKI67 CHIT1 KIF23 SPTB
DHRS9 PHOSPHO1 MMP9* CIT LIN7A SUCNR1
DLGAP5 PIWIL4 MYB CKAP2L LOC100289137 SYTL2
DTL PLK1 MYO6 CLEC5A LRRC4 TCL1A
E2F2 PPEF1 NUSAP1 CRISP2 LRRN1 TCN1
E2F8 PRC1 OLR1 CRISP3* MBOAT2 TNFAIP6
ECRP PRTN3 PPEF1 CTSG MGAM TNFRSF10C
EPB42 PTCH1 PRC1 CYP4F3 MKI67 TOP2A
ESCO2 PTGDR PRR13 DEFA4 MLNR TPX2
FAM151B PVALB PTH2R DHRS9 MMP8* TRBV28
FAR2 RETN RAP1GAP DLGAP5 MMP9* TRIM58
FCAR RHAG RRM2 DTL MPO TYMS
FOXM1 RNASE2 SIGLEC14 E2F2 MS4A3 UHRF1
GNLY RRM2 SIGLEC5 E2F8 MYL4 VSTM1
GPR84 RUNDC3A SLC27A2 ECRP MYO6 YOD1
GPR97 SAMD3 SLC28A3 ELANE NCALD ZNF788
GYPA SERPINB10 TOP2A EPB42 NLRC4
GZMH SERPINB2  TPX2  ERG* NUSAP1
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grouped samples in ≥5 CTCs and <5 CTCs (Fig. 2A). We 
found good correlation in the comparison of microarrays 
results and CTC count (r=0.67, P<0.001, Fig. 2B).

Microarrays analysis revealed 282 differentially 
expressed genes (fold change [FC] >│1.5│) between 
samples with ≥5 CTCs vs <5 CTCs. Most of these genes 
were involved in cellular metabolism, gene expression 
regulation, and cell morphogenesis, signaling and 
transport, and were significantly up-regulated in samples 
with ≥5 CTCs. Genes down-regulated in this group of 

samples were mostly involved in signal transduction 
and metabolic process (Supplementary Table S1). The 
50 most differentially expressed genes between both 
groups (FDR<0.001) are showed at Figure 3. Among the 
overexpressed genes in samples with ≥5CTCs, 58.6% have 
previously described as been over-expressed in prostate 
cancer, specifically 18.9% in primary tumor and 56.1% 
in metastasis in comparison with normal prostate tissue 
[16]. The complete list of these genes is shown in Table 
2. Reactome pathways analysis revealed significantly 

Figure 2: Correlation between gene expression data in PBMNC and CTC count. A) Unsupervised clustering grouping 
patients according to gene expression data; B) Principal component analysis. The Y-axis represents the log2 of the CTC number plus one, 
and the X-axis is PC1 (Spearman correlation P<0.001).
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deregulated pathways between samples with ≥ or <5 CTCs 
(P<0.05) (Table 3).

Gene expression profiling in peripheral blood 
mononuclear cells is associated with overall 
survival

Differential expression analysis revealed a large 
set of genes (False Discovery Rate (FDR)<5; signal 
expression median >7) that were significantly up- (840 
genes) and downregulated (948 genes) and significantly 
correlated with lower survival. The most frequent 
biological functions in which overexpressed genes were 
involved were cell movement, transport, metabolism 
and signaling. Pathways analysis revealed a set of up- 
(162) and downregulated (239) pathways related to OS 
(Supplementary Table S2). The identified pathways can be 
grouped into a limited number of categories: metabolism, 
apoptosis, DNA damage and repair, protein degradation, 
immune system, signal transduction, cell transport, 
cell growth, gene expression, protein organization and 
homeostasis. Among those associated with lower survival, 
100 genes were also deregulated in samples with ≥5 CTCs 
(78 overexpressed and 22 downexpressed) (Supplementary 
Table S3). 

Expression data from selected genes were 
validated by qRT-PCR

To determine the robustness of cDNA microarrays, 
we performed qRT-PCR of a selected group of ten genes 
among the top 40 more differentially expressed between 
samples with ≥5 and <5 CTCs count and/or related 
to lower OS. These genes were HP, CRISP3, MMP9, 
ABCA13, MMP8, OLFM4, SELENBP1, CEACAM1, 
HPR and ERG. Differential gene expression determined 
by microarrays was confirmed in all genes except for HP 
(90%).

A two-gene signature predicts overall survival in 
metastatic crPc

QRT-PCR data from the 9 out of 10 technically top 
differentially expressed validated genes was used to test, 
individually and combined, selected genes as predictors 
of OS. This initial analysis revealed that the expression of 
CRISP3, MMP9, ABCA13, MMP8, OLFM4, SELENBP1 
and CEACAM1 significantly correlated with lower OS 
(P<0.05) (Table 4A). These significant genes were tested 
in a set of PBMNC RNA samples from additional 27 
patients. A global OS analysis was performed in the whole 
series (N=70) confirming the predictive value of these 
genes in the univariate analysis (Table 4B).

The combination of SELENBP1 and MMP9 gene 
expression data was the best gene signature to indicate 
poorer prognosis, since elevated expression of both 
markers significantly correlated with a lower OS (Fig. 
4). The predictive accuracy of the two-gene signature for 
OS was assessed by the ROC curve (AUC: 0.79) (Fig. 5). 
Taking into account the whole series of patients (N=70), 
the predictive accuracy of the two-gene expression model 
was similar than in the subset of 43 initial patients (AUC: 
0.77; data not shown).

Cox regression models of SELENBP1 and MMP9 
gene expression, and of the dicotomic CTCs count (≥5 and 
<5-CTCs) were compared and not statistically significant 
differences were found between both models (P=0.47). 
A combined model including both two-gene expression 
and CTCs count resulted to be a better predictive model 
for OS (AUC: 0.87) than individually by ROC analysis 
(Fig. 5). Statistically significant differences between the 
combined model and the individual parameters were found 
(MMP9+SELENBP1 vs MMP9+SELENBP1+CTCs count 
P<0.05; CTCs count vs MMP9+SELENBP1+CTCs count 
P<0.05).

In a multivariable Cox model adjusted 
for the expression of the two-gene signature 
(MMP9+SELENBP1), CTCs count and clinical 
characteristics of high risk progression (PSA, alkaline 
phosphatase, lactate dehydrogenase, hemoglobin levels 

Table 3: Reactome pathways analysis showing significantly deregulated pathways between samples with 
≥5 CTCs vs <5 CTCs (P<0.05).

Genes involved N genes at 
pathway rEAct_ID Name of the event

RFC2, HSPA2, 
HIST2H2AA4 103 REACT_22172 Chromosome Maintenance

CYP24A1, 
PTGIS, MGST2 138 REACT_13433 Biological oxidations

CYP24A1, 
PTGIS 49 REACT_13567 Cytochrome P450 - arranged by substrate type

HIST2H2AA4 56 REACT_7970 Telomere Maintenance

HSPA2, RFC2, 
HIST2H2AA4 57 REACT_75792 Meiotic Synapsis
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Figure 3: Heatmap representing expression profile of the 50 most differentially expressed genes in samples from 
castration-resistant prostate cancer patients with ≥5 CTCs compared to those with <5 CTCs (FDR<0.001). Rows 
represent genes and columns represent hybridized samples. Red pixels: upregulated genes; Green pixels: downregulated genes. The 
intensity of each color denotes the standardized ratio between each value and the average expression of each gene across all samples.
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Table 4: Univariate analysis of RT-PCR validated genes for predicting OS in: A) the cohort of patients with 
known CTCs count (N:43); B) the whole series of patients (N:70).

A OS-initial series (N:43)

Hazard ratio (95% CI) P-value Odds ratio (95% CI) P-value

ABCA13 1.40 (1.15 - 1.70) 0.000673 1.60 (1.16 - 2.20) 0.004
CEACAM 1.47 (1.18 - 1.82) 0.000556 1.73 (1.18 - 2.53) 0.005
CRISP3 1.40 (1.16 - 1.68) 0.000339 1.53 (1.15 - 2.03) 0.003
MMP8 1.44 (1.19 - 1.74) 0.000187 1.60 (1.18 - 2.17) 0.002
MMP9 1.38 (1.15 - 1.65) 0.000593 1.52 (1.15 - 2.00) 0.003
OLFM4 1.46 (1.20 - 1.78) 0.000167 1.64 (1.18 - 2.28) 0.004

SELENBP1 1.21 (1.06 - 1.39) 0.00501 1.44 (1.09 - 1.90) 0.009

b OS-global series (N:70)

Hazard ratio (95% CI) P-value Odds ratio (95% CI) P-value

ABCA13 1.23 (1.08 - 1.41) 0.00224 1.40 (1.13 - 1.81) 0.00399
CEACAM 1.26 (1.09 - 1.47) 0.00232 1.49 ( 1.17 - 1.98) 0.0027
CRISP3 1.18 (1.04 - 1.33) 0.00771 1.29 (1.07 - 1.61) 0.0138
MMP8 1.22 (1.09 - 1.37) 0.000655 1.41 (1.16 - 1.77) 0.00152
MMP9 1.34 (1.15  - 1.57) 0.000151 1.47 (1.19 - 1.86) 0.000644
OLFM4 1.26 (1.10 - 1.44) 0.00102 1.38 (1.13 - 1.73) 0.00278

SELENBP1 1.23 (1.09 - 1.39) 0.000907 1.36 (1.14 - 1.69) 0.00184

Figure 4: survival analysis according to SELENBP1 and MMP9 expression. A) Kaplan-Meier curves in patients with known 
CTCs count (N=43); B) Kaplan-Meier curves in the whole series of patients (N=70).
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at time of the sample extraction), the expression of the 
two-gene signature remained independently predictive of 
shorter OS (HR 14.53; 95% CI, 1.91 - 110.8; P<0.01); the 
CTCs count was also predictive of shorter OS (HR 6.94; 
95% CI, 1.76 - 27.34; P<0.01). In the global series CTCs 
count was not included in the multivariate model, because 

of the lack of data in 27 samples, and the two-gene 
signature remained independently predictive of shorter OS 
(HR 3.42; 95% CI, 1.11 - 10.52; P<0.05) (Table 5).

Table 5: Multivariable Cox models adjusted for CTCs (circulating tumor cells), 
SELENBP1+MMP9 expression, PSA (prostatic specific antigen), AP (Alkaline 
phosphatase), LDH (Lactate dehydrogenase) and presence of visceral metastases.

Patients with CTC count (N=43)    
 Hr 95% CI P-value

MMP9 - SELENBP1 14.53 1.91 110.75 0.0098
Number of CTC (≥ or < 5) 6.95 1.76 27.34 0.0056

PSA 0.99 0.99 1 0.7737
FA 1 1 1 0.02

LDH 0.99 0.99 1 0.3725
Hb 0.97 0.94 1 0.1001

Visceral metastases 2.89 0.45 18.63 0.2638

All patients (N=70)     
 Hr 95% CI P-value

MMP9 - SELENBP1 3.42 1.11 10.52 0.0321
PSA 1 0.99 1 0.6633
FA 0.99 0.99 1 0.237

LDH 1 0.99 1 0.2737
Hb 0.96 0.93 0.99 0.0146

Visceral metastases 1.08 0.34 3.47 0.8901

Figure 5: Receiver operating characteristic (ROC) curves illustrating CTCs count and two-gene signature 
(MMP9+SELENBP1) alone and combined for the prediction of OS.
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DIscUssION

The CTCs are a fundamental prerequisite to the 
spread of solid cancers, however, the metastatic process 
appears to be inefficient since only a subpopulation of 
CTCs has the potential to initiate clonal metastatic lesions, 
which leads ultimately to the death of patients [17]. The 
study of the biological characteristics of cells responsible 
for tumor aggression is one of the challenges for CTC 
research. 

The current study identified genes and molecular 
pathways that represent biological differences between 
groups of metastatic CRPC patients with different 
CTC load and prognosis by using comprehensive gene 
expression analysis of blood samples. We observed 
differential expression of 282 genes between samples 
with ≥5 CTCs and <5 CTCs (FC >│1.5│). It is important 
to point out that most of the differential expressed genes 
had been previously described as associated with PC [16], 
supporting that molecular alterations present in tumors 
may be also detected in peripheral blood. Those genes 
were involved in survival functions such as metabolism, 
signal transduction, gene expression, and cell growth, 
death, and movement. Specifically, among the pathways 
deregulated we found chromosome and telomere 
maintenance, which is a hallmark of cancer cells compared 
to normal cells. Also it is of note the involvement of 
biological oxidation which constitutes the basis for 
obtaining energy during tumor growth and metastasis 
process [18]. The deregulation of these pathways is 
consistent with a previously reported gene expression 
meta-analysis that identified biological pathways involved 
in metastasis of breast cancer [19].

We also describe genes and pathways related to 
lower OS, which are involved in cell survival functions 
such as metabolism, signal transduction, transport, 
and movement, providing biological information that 
may be relevant in the understanding of the process on 
CRPC progression. Thus, in the RT-PCR validation study 
we identified seven differentially expressed genes that 
correlated with lower OS: CRISP3, MMP9, ABCA13, 
MMP8, OLFM4, SELENBP1 and CEACAM1. Of note, 
high levels of CRISP3 expression have been previously 
found in CRPC and metastases [20]. Moreover, 
metallopeptidases are known, not only to contribute to 
cancer progression and invasion, but also to signaling 
pathways that control cell growth, inflammation, or 
angiogenesis [21]. Specifically, MMP9 is a known 
ERG target [22], which is one of the genes significantly 
upregulated in samples with ≥5 CTCs. Further, ABCA13 
gene belongs to the ATP-binding cassette (ABC) family of 
transmembrane transporters and has been observed to be 
significantly deregulated in the castration-resistant human 
cell lines DU-145 that are resistant to docetaxel [23]. 
OLFM4 promotes S phase transition in cancer cells as 
well as being associated with cell adhesion and metastasis 

[24]. SELENBP1 gene is expressed in LNCaP cells and 
is reversibly downregulated by androgen. However, it 
is not expressed by either of two androgen-insensitive 
human lines, PC-3 and DU-145 [25]. The exact function 
of SELENBP1 remains unknown. Finally, CEACAM1 
epithelial marker has been related with increased 
vascularization of prostate cancer [26].

The validation of this seven-gene model in a wider 
cohort demonstrated the strong prognostic significance 
of the combination of SELENBP1 and MMP9 gene 
expression. Although the described gene signature did not 
increase the prognostic significance of CTCs enumeration 
alone, it adds prognostic ability when it was used in 
combination with CTCs count. Interestingly, MMP9 and 
SELENBP1 were also upregulated in PBMCs from the 
short-term survivors patients included in a microarrays 
study from Komatsu et al. [27]. Authors suggested the 
relevance of the immune system in CTCs load and, 
consequently, in clinical and biological behavior of 
prostate cancer.

Two studies described whole-blood RNA transcript-
based prognostic models in metastatic CRPC. Ross et 
al. described a six-gene signature (consisting of ABL2, 
SEMA4D, ITGAL, and C1QA, TIMP1, CDKN1A) that 
separated patients with CRPC into two risk groups: a low-
risk group with a not reached median survival (more than 
34.9 months) and a high-risk group with a median survival 
of 7.8 months (P<0.0001), that was validated in an 
independent series of 140 patients. The authors concluded 
that the six-gene model suggests a possible deregulation of 
the immune system, a finding that warrants further study 
[13]. On the other hand, Olmos et al. identified a nine-gene 
signature associated with worse OS. Expression profiles 
were analyzed with Bayesian latent process decomposition 
(LPD) and patients were stratified into distinct prognostic 
groups, with different survival: the LPD1, with a median 
OS of 9.2 months vs 21.6 months in the non-LPD1 [7.5-
35.6]; P=0.001).

In conclusion, we describe a transcriptional 
profile in PBMNC associated with CTCs count that 
shows deregulated pathways that may contribute to PC 
progression. The knowledge of the molecular alterations 
associated with CTC load in peripheral blood has 
revealed genes, which are likely to be responsible for 
tumor aggressiveness and are potential targets for the 
development of future treatments.

METHODS

Patients and samples

Inclusion criteria was histologically or citologically 
documented prostate cancer diagnosis, stage IV, that 
where considered to be in a CRPC status defined as the 
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Prostate Cancer Clinical Trials Working Group (PCWG2) 
criteria [28]. Patients were included at the time of 
progression or before starting a new antitumor therapy. 
Disease progression was defined as rising levels of PSA or 
radiographic criteria, following the PCWG2 criteria [28].

The study was designed as a prospective study. 
Patients were prospectively followed from the time of 
study inclusion until death or last visit. OS was determined 
from the date of CTC determination to the date of death or 
last follow-up visit. The institutional committee on human 
experimentation approved this study and written informed 
consent was obtained from all patients.

The design of this study comprised a first stage, 
were an initial cohort of patients were tested for CTCs 
count and microarrays analysis, and a second stage, were 
a selected set of genes were validated by RT-qPCR in 
the same cohort plus in a new series of patients. Gene 
expression data were correlated with clinical outcome. 

ctcs enumeration

CTCs were counted and isolated as described 
previously [6, 29]. Briefly, 7.5 mL of peripheral blood was 
collected in CellSave Preservative Tubes (Veridex, LLC) 
following manufacturer’s instructions. The first 5 mL of 
blood were discarded to avoid epithelial contamination by 
the skin during venipuncture. Samples were kept at room 
temperature for up to 96 hours until processing. CTCs 
were enriched by immunomagnetic isolation based on 
the expression of epithelial cellular adhesion molecules 
(EpCAM) using the CellSearhc Circulating Tumor 
Cell Kit with an automated cell processor (CellTracks 
Analyzer II; Veridex, LLC). The ferromagnetic reagent 
was conjugated with a phycoerythrin fluorochrome. 
Labeled cells were resuspended in a CellTracks Magnetic 
cartouche and analyzed by a semi-automated fluorescence 
cell reader (CellTracks Analyzer II; Veridex, LLC). CD45 
was used to determine potential contamination of blood 
cells with leucocytes. The CTCs were identified by their 
DAPI (nuclear) and EpCAM expression in the absence of 
CD45-staining.

total rNA extraction

Five mL of peripheral blood samples were collected 
into Monovette EDTA–containing Vacutainers (Sarstedt). 
Blood specimens were layered onto 4 mL of Ficoll-
Paque (GE Healthcare Life Sciences). Mononuclear cells 
were isolated and total RNA was extracted using Trizol 
Reagent (Invitrogen Life Technologies) according to 
manufacturer’s instructions. RNA was quantified by ND-
1000 Spectrophotometer (Nanodrop Technologies).

cDNA Microarray 

For microarrays hybridization, RNAs were purified 
using the RNeasy Micro kit (Qiagen), and quality 
were measured by Bioanalyzer technology. cDNA was 
generated from 300 ng of total RNA using the Ambion 
WT Expression Kit (Applied Biosystems) and according 
to manufacturer’s instructions.

Fragmented, labeled and amplified cDNA was 
hybridized to the Human Gene 1.1 ST Array (Affymetrix), 
which represents approximately 33,000 probe sets. Wash, 
rinse and scanning of the arrays was performed according 
to manufacturer’s instructions. Quality of the microarray 
was assessed by dChip [30] and Expression Console 
(Affymetrix) softwares.

Raw expression data from microarrays were 
normalized using the robust multiarray algorithm [31] 
with a custom probe set definition that mapped probes to 
Entrez Gene IDs (HuGene11stv1_Hs_ENTREZG) [32]. 
To identify differentially expressed genes between the 
different microarray study groups we employed Significant 
Analysis of Microarray [33]. One thousand permutations 
of the data were used to estimate the False Discovery Rate 
(FDR) and to select differentially expressed genes. 

The CEL files and RMA values were deposited on 
Gene Expression Omnibus (GSE66532). 

qRT-PCR

One µg of total RNA was reverse transcribed using 
the High Capacity cDNA Archive Kit (Life Technologies) 
following manufacturer’s instructions. A real-time 
quantitative reverse transcription PCR (qRT-PCR) was 
performed in a StepOnePlus Real-Time PCR system 
(Life Technologies) according to the manufacturer’s 
recommendations. Data was acquired using SDS Software 
1.4. Amplification reactions were performed by duplicate. 
Expression values were based on the quantification 
cycle (Cq) from target genes relative to the Cq of ACTB 
endogenous gene. Relative expression with respect to 
each reference group studied was reported as LogRatio. 
Commercial codes for primers and probes were used to 
amplify target genes (Life Technologies).

Differential gene expression analysis and 
validation

The number of CTCs was correlated with 
transcriptomic profile of genes with a median log2 
intensity of 6 (9509 genes, 48.5% of total genes). Patients 
were clustered using spearman correlation and complete 
distance method. Principal Component Analysis (PCA) 
was used to test variability of gene expression according 
to CTC number. Pathways analysis was performed using 
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Reactome, an open source, peer-reviewed database of 
human pathways and processes [34].

Ten among the forty most differentially expressed 
genes between the <5 and ≥5 CTCs groups were selected 
for further validation in PBMNC samples from the same 
patients studied by microarrays. Among them, those who 
significantly predict OS were analyzed in a new series of 
samples, using qRT-PCR.

Statistical analysis methods

Continuous CTC counts data were converted to 
a binary classification (≥5 CTCs vs <5 CTCs). Kaplan-
Meier survival curves were generated and evaluated by 
log-rank test. For multivariate logistic regression, the 
Akaike information criterion (AIC)-based backward 
selection was used to drop insignificant terms [35].

The CTC count data were further analyzed with 
a receiver operating characteristic (ROC) curve to 
estimate a cut-off value that maximized sensitivity and 
specificity. The relation between gene expression and 
clinical outcome was analyzed with Cox proportional 
hazard model. The stepwise Cox regression model 
for multivariate analysis was used to evaluate such 
association. P-value ≤0.05 was considered. The best 
combination of two genes was selected. The resulting 
two-gene model was tested on the initial set of 43 patients 
(training set) and with additional 27 patients. This analysis 
was done on a masked basis. Individual model risk scores 
were computed for each individual patient according to 
the prespecified coefficients established in the training set 
for the two-gene model. We developed a cutpoint value 
(Youden Index derived from Risk scores and status) in 
the training set that was applied to split the samples into 
two groups according to prognostic risk. Kaplan-Meier 
survival curves were generated for the two groups on the 
basis of the prespecified cutpoint. We use the dichotomous 
variable representing the two risk groups being used as a 
single covariate.

All computations were performed using R statistical 
software [36].
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