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NUAK2: an emerging acral melanoma oncogene
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AbstrAct:
Recent technological advances in cancer genomics make it possible to dissect 
complicated genomic aberrations of melanomas. In particular, several specific 
genomic aberrations including 11q13 amplification and KIT aberrations have been 
identified in acral melanomas. We recently identified NUAK2 at 1q32 as a promising 
oncogene in acral melanomas and reported its significant roles in tumorigenesis in 
melanoma cells using both in vitro and in vivo analyses. NUAK2 as a member of the 
AMPK family has several intriguing aspects both as an oncogene and as a tumor 
suppressor gene. Here we review genomic aberrations of melanomas focusing 
on acral melanomas to emphasize the possible roles of NUAK2 in tumorigenesis 
in general and suggest that NUAK2 has pivotal roles in acral melanomagenesis.

INtrODUctION

The identification of genes that participate in 
oncogenesis has facilitated recent development of 
molecular targeted therapies against cancer (reviewed 
in [1-3]). In the past several years, the identification of 
mutations in the BRAF gene in melanomas has led to 
the development of molecular therapies targeting those 
mutations in metastatic melanomas, which is a highly 
lethal disease [4-6]. However, recent studies have also 
shown that the frequency of mutation of the BRAF gene 
in melanomas has clear discrepancies depending on 
the subtype of melanomas [7-11]. A high frequency of 
aberrations in the BRAF gene is observed in Non-CSD 
(CSD:chronic sun-induced damage) melanomas [8, 12], 
while the BRAF V599E mutation has a relatively low 
frequency in other subtypes of melanomas, including 
frequencies ranging from 15% to 33% in acral melanomas, 
which occur on the palms, soles and subungual sites [8, 
10], but almost 0% in mucosal melanomas [9, 10]. These 
discrepancies suggest the hypothesis that other genomic 
aberrations may play important roles in melanomagenesis 
in subtypes of melanomas other than Non-CSD melanomas 
and that further explorations of genomic aberrations, 
which can be ideal and effective targets for molecular 
targeted therapies against melanomas, are required to 
develop more effective and alternative therapies targeting 
a wide range of melanomas. In acral melanomas, several 

genomic aberrations, including amplification of 11q13 and 
KIT mutations, have been found [13-15]. The elucidation 
of genomic aberrations in melanomas using detailed 
analyses of public array-CGH databases suggests that 
genomic gain at chromosome 1q32 has profound effects 
on acral melanomagenesis. NUAK2, a gene at this locus, 
has regulatory impacts on the proliferation and migration 
of melanoma cells [16]. 

The SNF1/AMP-activated protein kinase (AMPK) 
family functions to control the balance of cellular 
metabolisms, and is activated by the cellular AMP:ATP 
ratio that is regulated by metabolic stresses such as hypoxia 
and glucose deprivation [17, 18]. AMPK is composed of 
3 subunits (α, β and γ), and the α-subunit is the catalytic 
subunit. This catalytic subunit family includes 5 members: 
AMPK-α1, AMPK-α2 [19-21], MELK [22], NUAK2/
SNARK [23, 24] and NUAK1/ARK5 [25]. Twelve 
protein kinases (BRSK1, BRSK2, NUAK1, NUAK2, 
QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 
and MELK) have been identified as AMPK-α1 and 
AMPK-α2 related kinases in the human kinome [26, 27]. 
The function of each member of this catalytic subunit are 
also closely connected to tumor formation and metastasis 
[18, 28, 29]. However, those functions participating in 
tumor formation and metastasis are different depending 
on each subunit. As shown in previous studies, AMPK-α1 
and AMPK-α2 have anti-oncogenic properties [30-32] 
while ARK5 has pro-oncogenic properties [33]. The exact 
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function(s) and mechanism(s) of NUAK2 (also known 
as SNARK), the fourth member of catalytic subunit of 
AMPK, remain unknown. NUAK2 has been speculated 
to have contradictory functions on tumorigenesis as a 
tumor suppressor or as an oncogene [24, 34]. In this 
review, we discuss the oncogenic role of NUAK2 and its 
clinical significance in melanoma patients, as well as its 
regulation by intracellular signaling pathways including 
LKB1 and CaMKKβ in melanoma cells.

AcrAL MELANOMA ONcOGENEs AND 
Its cLINIcAL AsPEcts

Recent tenacious efforts by investigators have 
accelerated the elucidation of genomic alterations in 
melanoma cells. The first step to decipher enigmas in 
complex genomic alterations in melanoma cells had 
started by taking advantage of techniques that had been 
utilized to elucidate chromosomal abnormalities in 
hematopoietic malignancies [35-39]. Those techniques, 
which examine structural and numerical chromosomal 
aberrations in hematopoietic malignancies and sarcomas, 
had elucidated a reciprocal translocation between the long 
arms of chromosomes 9 and 22 (e.g., the Philadelphia 

chromosome) in chronic myelogenous leukemia (CML) 
[40-41] and resulted in identifying the oncogenic fusion 
protein of BCR-Abl [42-44]. Those discoveries eventually 
led to the development of a BCR-Abl inhibitor (imatinib 
mesylate; Gleevec), which improved the management of 
patients who suffer from CML [45-48]. As this example 
has clearly indicated, the identification of oncogenes 
and tumor suppressor genes, which can be guided by the 
characterization of structural and numerical aberrations 
of chromosomes in cancer cells, is an important step and 
an efficient approach to develop effective therapeutic 
modalities to control lethal diseases and improve the 
quality of life of cancer patients. For malignant melanoma, 
early studies pointed out nonrandom chromosomal 
aberrations involving chromosomes 1, 6, 7, 10 and 19 
[35-39], and those aberrations had been confirmed by a 
larger number of cases [49]. A series of those early studies 
emphasizes that chromosomal aberrations involving 
chromosomes 1 and 6 are important in melanomagenesis, 
and particularly a recurring translocation of t(1;6) was 
noted (Fig. 1a) [50]. However, progress in the elucidation 
of oncogenes and tumor suppressor genes in melanomas 
by cytogenetic analyses were hampered technologically 
due to difficulties in obtaining metaphase preparations 

Figure 1: chromosome rearrangements and impact on survival of melanoma patients. A) Translocations in melanoma 
cells. The long arm of chromosome 1 is translocated to the short arm of chromosome 6 to result in the t(1;6) chromosome. B) Metaphase 
CGH analyses revealed that both chromosomal gains of 1q and 6p significantly correlate with the survival of melanoma patients (ref. 62). 
Kaplan-Meier survival analyses for overall survival are shown. P values are indicated. 
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that are suitable for karyotyping from primary tumors. 
Comparative genomic hybridization (CGH) had 
overcome those technical obstacles by using genomic 
DNA as source materials to analyze genomic alterations 
of primary tumors [51], and microarray technologies 
extensively increased the resolutions of CGH analyses 
[52]. Those novel technologies were swiftly applied to 
analyses of genomic alterations of melanoma cells [13, 
53]. Analyses of a large number of cases with different 
clinical subtypes of primary melanomas using array-CGH 
revealed that melanomas have four different subtypes from 
a genomic point of view: melanomas on skin with chronic 
sun-induced damage (CSD melanoma), melanomas on 
skin without chronic sun-induced damage (Non-CSD 
melanoma), Acral melanomas and Mucosal melanomas 
[54]. Those novel findings obtained by a series of CGH 
studies in addition to mutation analyses including the 
BRAF gene enabled progress in the research fields of 
molecular pathogenesis of melanomas in contrast to the 
previous concept, which was speculated from clinical and 
histopathological observations, that melanomas do not 
have enough evidence to subcategorize them into different 
subsets [55].

Acral melanomas occur on nailbeds and plantar 
regions such as the palms of the hands and soles of the 
feet [56]. The histopathological expression of acral 
melanomas is not always acral lentiginous melanoma, 
and other histopathological types of superficial spreading 
melanoma and nodular melanoma also exist [57]. 
Although the aggressiveness of acral melanomas had 
been disputed due to small sample size [58], recent data 
with a large cohort supports the aggressiveness of acral 
melanomas [59]. CGH analyses have shown unique 

genomic changes of acral melanomas that differ from 
those of other melanomas. At the chromosomal level, 
numbers of genomic aberrations in the whole genome 
were higher in acral melanomas. Particularly numbers of 
amplifications are significantly high, and amplifications at 
11q13 and 5p15 are noted in acral melanomas [60, 61]. 
Those changes were also verified by array-CGH analyses 
[53]. High resolution mapping of an amplicon at 11q13-
14 in breast cancer suggests CCND1, S6K2 and GAB2 
as candidate genes in that region [62]. Fluorescence in 
situ hybridization (FISH) and/or immunohistochemical 
analyses showed that amplification and high expression of 
CCND1 were also observed in acral melanomas [63, 64]. 
Interestingly, the amplification of CCND1 is relatively 
rare in melanomas with BRAF-NRAS mutations and 
may have similar effects on melanoma cell growth as 
the activation of the mitogen-activated protein kinase 
(MAPK) signaling pathway resulting from BRAF and/
or NRAS mutations [65, 66]. Another array-CGH study 
indicated the importance of the 4q12 region, where a 
narrow amplification is observed in acral, mucosal and 
CSD melanomas and the KIT gene resides at that locus 
[67]. Activation of KIT results from amplification and/or 
mutation, and mutations are frequently observed in exons 
11, 13 and 17 [15, 68]. This KIT activation is intriguing, 
because it could be a direct target of therapies against 
acral melanomas using inhibitors targeting KIT (such 
as imatinib mesylate) [69, 70]. A particularly important 
point in the tumorigenesis of acral melanomas that is 
different from other subtypes of melanomas such as Non-
CSD melanomas is that BRAF mutations occur at lower 
frequencies in acral melanomas [71]. These observations 
imply that other genetic aberrations may have a profound 
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effects on the tumorigenesis of acral melanomas.
CGH combined with analyses of clinical parameters 

are a powerful approach to identify genomic loci that have 
significant impact on the clinical outcome of melanoma 
patients. Both the classical cytogenetic approach and the 
CGH approach share the same implication that the long 
arm of chromosome 1 and the short arm of chromosome 
6 may have a profound effect on the tumorigenesis of 
melanomas since both chromosomal regions have a 
significant impact on the clinical outcome of patient 
survival (Fig.1b) [50, 61]. Statistical analyses comparing 
tumor thickness, which is a predominant factor for clinical 
outcome in primary melanomas, by taking advantage of 
public array-CGH databases have revealed that 1q32, 
among the 4 loci of 1q21-23, 1q32, 6p23-25 and 6p21, 
is significantly correlated with tumor thickness in acral 
melanomas. Using the candidate gene approach, NUAK2 
at this locus has been revealed as a promising gene that 
participates in the clinical outcome of acral melanomas 
(Fig. 2) [16]. 

PHYsIOLOGIcAL rOLEs OF NUAK2 
AND tHE AMPK FAMILY

NUAK2 is the fourth member of the AMPK family of 
kinases and shares a similar catalytic domain of the sucrose-
non-fermenting protein kinase (SNF1)/AMP-activated 
protein kinase (AMPK) family of serine/threonine protein 
kinases. The NUAK2 gene resides at 1q32 and encodes 
630 amino acid residues that are translated into a protein 
of approximately 76 kDa [23]. In general, AMPK family 
members are made up as heterotrimeric complexes of a 
catalytic α-subunit and regulatory β- and γ-subunits, and 
they act as an energy sensor to monitor energy homeostasis 
by binding AMP to the γ-subunit [17]. The binding of 
AMP to the γ-subunit stimulates the kinase activity of 
the α-subunit and promotes the phosphorylation of a Thr 
residue in the kinase domain, which results in the boost 
of kinase activity by additive (and/or synergic) effects of 
both stimulations [72]. Upstream regulators of the AMPK 
family have been identified including LKB1 and the 
calmodulin-dependent protein kinase kinases (CaMKKα 
and CaMKKβ) [73, 74]. LKB1 regulates 13 AMPK related 
kinases including NUAK2 as an upstream regulator [26]. 
Downstream effects of the AMPK family are diverse. The 
main effects of the AMPK family are functions relating to 
cellular metabolisms including the regulation of glucose 
intake [75]. The AMPK family has also diverse effects via 
regulation of the transcription of various genes related to 
the control of cell proliferation and cell polarity [76, 77]. 
Some of these effects are suspected to be tissue specific 
[17].

The amount of knowledge about the regulation 
and function(s) of NUAK2 is quite limited compared to 
AMPK-α1 and AMPK-α2. However, several important 
functions related to myosin filaments and cytoskeleton 

organization have been revealed. Myosin phosphatase 
target subunit 1 (MYPT1) was identified as a specific 
substrate for NUAK2. MYPT1 is phosphorylated by 
NUAK2 at sites other than Thr696 and The853, which 
are known as Rho-kinase (ROCK) phosphorylation sites 
[78]. Further, a study showed that unc-82, which encodes 
a serine/threonine kinase orthologous to human NUAK1/
NUAK2 (ARK5/SNARK) in Caenorhabditis elegans, 
participates in maintaining the integrity of components 
of myosin filaments. Disruption of unc-82 by mutations 
causes defects in cytoskeleton reorganization during 
embryogenesis [79]. Another study showed that NUAK2 
is able to associate with myosin phosphatase Rho-
interacting protein (MRIP) and this association results in 
increased levels of myosin regulatory light chain (MLC) 
phosphorylation and facilitates the formation of stress 
fibers. Activities resulting from those associations of 
NUAK2 and MRIP are independent of NUAK2 kinase 
activity and those associations inhibit fiber disassembly 
and MYPT1-mediated MLC dephosphorylation. Important 
roles of NUAK2 on fiber maintenance in proliferating cells 
and the existence of a positive –feedback loop regulating 
actin stress fibers independent of the MLC kinase Rho-
associated protein kinase (ROCK) have been indicated 
[80]. As the AMPK family of kinases in general functions 
as a sensor of metabolic homeostasis in cells, NUAK2 is 
activated by cellular stresses such as glucose deprivation, 
rotenone and sorbitol [23, 81]. Muscle contraction 
increases glucose transport by increasing NUAK2 activity 
in skeletal muscle cells, which suggests that NUAK2 
functions to connect to the cytoskeleton modulation 
induced by muscle contraction with energy homeostasis 
in cells [82]. Those results indicate that NUAK2 plays a 
pivotal role in regulating the cytoskeleton, which is also 
important in cell proliferation and motility, and suggests 
that NUAK2 connects metabolic homeostasis and cell 
motility. The disruption of those mechanisms in normal 
cells may reflect cell proliferation and migration in cancer 
cells.

POtENtIAL ONcOGENIc rOLEs OF 
NUAK2 AND Its sIGNIFIcANcE IN 
AcrAL MELANOMAs

Disruption of the normal regulation and function(s) 
of NUAK2 may lead to the dysregulation of proliferation 
and migration in cancer cells. However, the exact effects 
and mechanisms participating in tumorigenesis remain 
to be elucidated due to the lack of sufficient molecular 
studies of NUAK2. Several conflicting results on 
tumorigenesis including cell proliferation, apoptosis and 
migration have been reported. The knockdown of NUAK2 
using siRNA or shRNA reduces cell proliferation in vitro 
and tumor growth in vivo in melanomas, and the extent 
of those reductions of cell proliferation varies depending 
on the different genomic aberrations of melanoma cells 
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[16]. Another study with a carcinogen (azoxymethane) 
induced colorectal tumorigenesis model using NUAK2-
deficient mice has shown that hemiallelic loss of NUAK2 
contributes to carcinogen-induced neoplastic and 
preneoplastic lesions of colorectal carcinomas, which 
suggests there are tumor suppressive roles of NUAK2 in 
the early phase of tumorigenesis and suggests the minor 
effects of NUAK2 deficiency on cell proliferation in vivo 
from the profile of the proliferating cell population [83]. 
Over-expression of NUAK2 induced prolongation of cell 
survival of HepG2 cells in nutrient-deprived circumstances 
[24]. This function of NUAK2 is partly dependent on 
anti-apoptotic properties against apoptosis induced by 
death ligand such as the CD95 ligand, TRAIL and TNF-α 
which shows that NUAK2 is a kinase induced by TNF-α 
[78, 84]. However, NUAK2 functions during apoptosis 
are different depending on the melanoma cell lines [16]. 
NUAK2 also has effects on the migration of cancer cells 
as speculated from studies on myosin filaments and 
cytoskeleton organization in normal cells. An initial study 
revealed that the over-expression of NUAK2 has effects 
on cell-cell detachment in glucose deprived circumstances 
and suggested that over-expression of NUAK2 induced 
dysregulation of mechanisms to maintain the cytoskeleton 
and to coordinate its attachment to the cell membrane 
[24]. CD95 stimulation facilitates cell motility and 
invasiveness of MCF7-FB cells, which up-regulates 
NUAK2 expression by stimulation of the CD95 ligand 
[84]. That evidence suggests that the effects of NUAK2 
on tumorigenesis are different depending on the tissue and 
the phase of tumorigenesis, and that NUAK2 participates 
in increased cell motility and invasiveness.

UV irradiation is one of the major causes of 
cutaneous melanomas, but acral and mucosal melanomas 
are protected from exposure to UV irradiation due 
to their anatomical locations. Thus, the molecular 
pathogenesis of acral and mucosal melanomas should 
be different from that of cutaneous melanomas arising 
from sun-exposed areas such as Non-CSD melanomas, 
and causes other than UV irradiation, such as reactive 
oxygen species (ROS), may play an important role in the 
melanomagenesis of acral and/or mucosal melanomas. 
The HGF/SF transgenic mouse model is prone to develop 
cutaneous melanomas following UV irradiation [85]. In 
that mouse model, LKB1 is one of the major downstream 
targets and uncoupling of the LKB1-AMPK pathway by 
oncogenic BRAF is one possible mechanism to promote 
the proliferation of melanoma cells with BRAF mutations 
[86]. Another study has substantiated the pivotal role of 
the LKB1-AMPK pathway in melanomagenesis [87]. 
The anatomical distribution of lentigines in Peutz-Jeghers 
syndrome, which is caused by mutations in the LKB1 
gene, is almost identical to the distribution of both acral 
and mucosal melanomas. Although those observations 
imply that the LKB1-AMPK pathway may also play a role 
in the neoplastic formation of melanocytes distributed 
in those areas, melanomas are relatively rare with a few 
exceptions in those areas of patients with Peutz-Jeghers 
syndrome [88, 89]. Recent studies have shown that both 
ROS and hypoxia can activate AMPK through calcium 
release-activated calcium (CRAC) channels and CaMKKβ 
independent of LKB1 [90, 91]. Melanocytes are speculated 
to reside both in ROS abundant and in hypoxic conditions 
from observations that ROS are constantly generated as a 
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byproduct of melanin synthesis in melanocytes [92], and 
that the epidermis where melanocytes reside is a relatively 
hypoxic environment (with oxygen levels ranging from 
1.5% to 5.0%) [93]. Although the exact mechanism(s) 
that connects ROS and/or hypoxia to NUAK2 are still 
under investigation, those mechanisms should be further 
elucidated to explain melanomagenesis arising from acral 
areas. The downstream pathways by which NUAK2 
regulates the cell cycle machinery have been examined 
with knockdown experiments of NUAK2 by siRNA and 
suggest that NUAK2 regulates Cyclin D1 and Cyclin D3 
expression through the mTOR pathway to control cell 
proliferation (Fig. 3) [16]. The mTOR pathway participates 
in controlling progression through the cell cycle. Several 
studies using melanoma cells suggest that the mTOR 
pathway also participates in controlling the balance 
between senescence and quiescence under oncogenic and/
or tumor suppressive stimuli. These intricate molecular 
mechanisms may partly explain the dual functions of 
NUAK2 as an oncogene and as a tumor suppressor gene 
[94, 95]. Clinical data also suggest that NUAK2 plays a 
pivotal role in melanomagenesis in acral areas and has 
effects on the survival of patients with acral melanomas. 
Univariate analysis using Kaplan-Meier curves showed 
that high expression of NUAK2 has an impact on relapse-
free survival of acral melanoma patients (P = 0.0036), 
and multivariate analysis using multiple Cox regression 
analysis also showed the impact of NUAK2 on relapse-
free survival (hazard ratio = 3.88, 95% confidence interval 
= 1.44-10.50, P = 0.0075). Interestingly, those impacts of 
NUAK2 on melanoma patient survival are significant at 
relapse-free survival of acral melanomas compared to 
weak significances at Non-CSD melanomas and overall 
survival. Those observations lead to the speculation that 
NUAK2 has more profound effects on cell migration 
resulting in worsening relapse-free survival of acral 
melanoma patients as suggested by both a migration assay 
and a wound healing assay [16]. 

FUtUrE PErsPEctIVEs FOr 
tHErAPEUtIc IMPLIcAtIONs

The recent identification of KIT mutations in acral, 
mucosal and CSD melanomas led to the development of 
therapeutic modalities using imatinib mesylate to target 
KIT activation. Although initial studies achieved only poor 
responses using imatinib mesylate against melanomas, the 
stratification and appropriate selection of patients based 
on KIT activation by mutations and amplifications have 
improved responses of melanoma patients to imatinib 
mesylate [70, 98]. As this example has clearly shown, 
the use of molecular targeting agents should be based 
on a better understanding of molecular carcinogenesis 
and an appropriate selection of patients [96, 97]. In acral 
melanomas, the frequency of KIT mutations is relatively 
low and therapeutic strategies targeting other mutations 

and amplifications are required to improve overall 
efficacy and response taking advantage of inhibitors 
targeting those genetic aberrations. A better understanding 
of the roles of AMPK family members including NUAK2 
in acral melanomagenesis should be a necessary step to 
improve the management of acral melanoma patients. 
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