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ABSTRACT
We conducted multilevel analyses to identify potential susceptibility loci for 

renal cell carcinoma (RCC), which may be overlooked in traditional genome-wide 
association studies (GWAS). A gene set enrichment analysis was performed utilizing 
a GWAS dataset comprised of 894 RCC cases and 1,516 controls using GenGen, SNP 
ratio test, and ALIGATOR. The antigen processing and presentation pathway was 
consistently significant (P = 0.001, = 0.004, and < 0.001, respectively). Versatile 
gene-based association study approach was applied to the top-ranked pathway 
and identified the driven genes. By comparing the expression of the genes in RCC 
tumor and adjacent normal tissues, we observed significant overexpression of HLA 
genes in tumor tissues, which was also supported by public databases. We sought 
to validate genetic variants in antigen processing and presentation pathway in an 
independent GWAS dataset comprised of 1,311 RCC cases and 3,424 control subjects 
from the National Cancer Institute; one SNP, rs1063355, was significant in both 
populations (Pmeta-analysis = 9.15 x 10-4, Pheterogeneity = 0.427). Strong correlation indicated 
that rs1063355 was a cis-expression quantitative trait loci which associated with HLA-
DQB1 expression (Spearman’s rank r = -0.59, p = 5.61 x 10-6). The correlation was 
further validated using a public dataset. Our results highlighted the role of immune-
related pathway and genes in the etiology of RCC.

INTRODUCTION

Renal cell carcinoma (RCC) accounts for more than 
80% of kidney cancers [1]. The incidence of kidney cancer 
has been increasing since the 1970s [2], and the disease is 
among the top 10 most common cancers for both males 

and females in the United States [2, 3]. Cigarette smoking, 
obesity, and hypertension are well-known modifiable risk 
factors for RCC [2]. Other epidemiological risk factors 
include red meat consumption and occupational exposure 
to trichloroethylene [4], whereas alcohol, fruit, and 
vegetable consumption is suspected to be protective [2].
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Genetic susceptibility also plays an important role 
in RCC risk. Individuals who have a first-degree relative 
with a history of kidney cancer are at more than twice the 
risk for developing RCC [5, 6]. A handful of genes, such 
as VHL and FH, explain a fraction of the known inherited 
kidney cancer syndromes [7–11]. The candidate gene 
approach identified several genes that could be involved in 
the development of sporadic RCC, such as MET, KILLIN, 
and FLCN [12–14]. In recent years, three susceptibility 
loci at the following chromosomal regions, 2p21 (EPAS1) 
[15], 11q13 (a CCND1 transcriptional-enhancer site) 
[15–17] and 2q22.3 (ZEB2) [18], have been identified 
for RCC by genome-wide association studies (GWAS). 
In addition, we previously identified a common genetic 
variant at 12p11 (ITPR2) that was associated with RCC 
risk [16]. The locus, which was also identified by GWAS 
to be associated with waist-to-hip ratio [19], may provide 
insight into the relationship between obesity and RCC 
etiology.

Although GWAS and meta-analyses conducted by 
large consortia have been successful in identifying SNPs 
associated with complex diseases, most of these SNPs 
are located in intergenic regions and their biological 
mechanisms are largely unknown. A stringent criterion 
for significance (P < 5 × 10-8) of GWAS findings in order 
to reduce false positive results due to multiple testing 
is widely accepted. In contrast, the use of gene- and 
pathway-based analyses of GWAS data, which takes into 
account the aggregated effects within a gene or pathway, 
substantially reduces the multiple testing burden by 
combining numerous genes and pathways into a reduced 
number of gene sets. In this study, we searched for novel 
potential RCC genetic susceptibility loci through analyses 
in pathway, gene and SNP levels, using RCC GWAS data, 
gene expression data, copy number variation data, public 
datasets and online resources.

RESULTS

Twenty one pathways were consistently significant 
with p < 0.05 for all three algorithms (Table 1). In our 
analysis, most of the pathways identified were either 
immune- or cancer-related. The coverage of genes tagged 
by GWAS SNPs for each pathway was 80% or higher. 
However, only the antigen processing and presentation 
pathway remained significant after multiple comparison 
correction with a false discovery rate of 0.20. We adjusted 
the top 10 principal components to control the population 
substructure. Results of sensitivity analysis showed 
the antigen processing and presentation pathway was a 
promising candidate (Table S1).

We further investigated the genes that drove the 
association for the antigen processing and presentation 
pathway. VEGAS results revealed that eight genes 
belonging to the pathway were significantly associated 
with RCC risk (Table 2). Four genes belong to the HLA 

family: HLA-DQA1, HLA-DRB1, HLA-DQB1, and 
HLA-F, which were significantly overexpressed in RCC 
tumor tissues compared with paired adjacent normal 
tissues (Table 2). CREB1 and CTSL1 were slightly 
overexpressed but not statistically significant, while 
PSME3 showed a significantly reduced level in RCC 
tumor tissues. Among them, HLA-DQB1 had the greatest 
difference between paired tumor and normal tissue with 
a 21% increased expression in RCC tumor tissues. In 
addition, our findings were supported by TCGA data and 
6 datasets available in Oncomine. The upregulation of 
HLA genes between paired tumor and normal tissue were 
robust in all datasets (Figure 2, Table S2 and Figure S2). 
No chromosomal alteration was observed for 6p21.3 in 
our Array Comparative Genomic Hybridization (array-
CGH) data, where HLA genes are located (data not 
shown), and no copy number variation was observed 
in TCGA dataset implemented in Oncomine (data not 
shown). Furthermore, no somatic mutations of HLA genes 
were found in RCC tissue according to COSMIC database 
(data not shown).

We sought to validate SNPs located in our top 
significant pathway in an independent population. After 
filtering SNPs in strong linkage disequilibrium (R2 > 0.8), 
48 significant SNPs (all p < 0.05) in antigen processing 
and presentation pathway were sent to NCI (Table S3) 
for in silico validation. Only one SNP, rs1063355, was 
significantly associated with RCC risk in both the MD 
Anderson GWAS and the NCI GWAS (Table 3). The 
minor allele frequency of rs10663355 in control subjects 
was similar in two populations. Possessing one A allele 
of rs1063355 increased by 10%–20% the risk of RCC in 
both MD Anderson and NCI populations (P = 0.007 and 
0.039, respectively). The odds ratio for the combined MD 
Anderson and NCI data using fixed-effect meta-analysis 
was 1.14 (P = 9.15 × 10-4, Cochran’s Q test, I2: 0.0%, 
Pheterogeneity = 0.427). We imputed SNPs within +/−1 Mb of 
rs1063355 (Figure S3).

The SNP rs1063355 is located in the 3’-untranslated 
region of HLA-DQB1. ENCyclopedia Of DNA Elements 
(ENCODE) data showed that rs1063355 is located within 
the area predicted to act as enhancers in HepG2 and 
GM12878 cell lines (Table S4), with four proteins (e.g. 
TBP, ELF1, EBF1, and TCF12) bounding to the region. 
The details were also visually available in the figure 
downloaded from the UCSC Genome Browser (Figure 
S4). Interestingly, the SNP was found to be in expression 
quantitative trait locus (eQTL) with HLA-DQB1.

To further explore the SNP-gene relationship, we 
performed cis-eQTL analysis for rs1063355 in HLA-DQB1 
in 51 paired RCC and adjacent normal tissues collected by 
our group. There were 18, 22, and 11 patients with CC, 
AC, and AA genotypes, respectively. The minor allele of 
rs1063355 (risk allele A) was associated with lower log2 
transformed HLA-DQB1 mRNA level in adjacent normal 
tissues (Figure 3). Spearman’s rank correlation coefficient 
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Table 1: Significant1 pathways identified by GenGen, SNP ratio test, and ALIGATOR
Databases and pathways Number of genes 

in pathway given 
by databases

Number (%) of 
genes tagged by 

study GWAS SNPs

P value 2

GenGen SNP ratio test ALIGATOR

KEGG

  Antigen processing and 
presentation 89 78 (87.6%) 0.001 (0.104) 0.004 (0.122) < 0.001 

(0.028)

 Asthma 30 26 (86.7%) 0.019 (0.423) 0.027 (0.167) 0.043 (0.986)

 Allograft rejection 38 33 (86.8%) 0.007 (0.710) 0.013 (0.167) 0.006 (0.446)

 Graft versus host disease 42 34 (81.0%) 0.015 (0.385) 0.030 (0.167) 0.027 (0.922)

  Intestinal immune network for 
IGA production 48 44 (91.7%) 0.021 (0.635) 0.030 (0.167) 0.003 (0.246)

 JAK STAT signaling 155 146 (94.0%) 0.033 (0.335) 0.002( 0.122) 0.023 (0.889)

 Leishmania infection 72 63 (87.5%) 0.013 (0.571) 0.029 (0.167) 0.026 (0.916)

  Nod like receptor signaling 
pathway 62 58 (93.5%) 0.016 (0.472) 0.049 (0.167) 0.016 (0.777)

 T cell receptor signaling pathway 108 104 (96.3%) 0.019 (0.467) 0.016 (0.196) 0.015 (0.762)

BioCarta

 Cytokine 22 21 (95.5%) 0.003 (0.338) < 0.001 (0.134) 0.017 (0.720)

 DC 22 21 (95.5%) < 0.001 
(0.151) 0.002 (0.134) 0.011 (0.600)

Reactome

  CREB phosphorylation through 
the activation of RAS 27 23 (85.2%) 0.039 (0.850) 0.006 (0.408) 0.005 (0.509)

  CREB phosphorylation through 
the activation of CAMKII 15 15 (100%) 0.047 (0.781) 0.011 (0.523) 0.006 (0.600)

  NEF mediates down modulation 
of cell surface receptors by recrui-
ting them to clathrin adapters

21 20 (95.2%) 0.049 (0.810) 0.026 (0.586) 0.015 (0.877)

GO

 Microtubule cytoskeleton 152 138 (90.8%) 0.007 (0.462) 0.048 (0.528) 0.013 (0.995)

  Hematopoietin interferon 
classd200 domain cytokine 
receptor binding

29 29 (100%) 0.007 (0.712) 0.020 (0.528) 0.013 (0.995)

 Cytokine activity 113 108 (95.6%) 0.010 (0.413) 0.013 (0.528) 0.015 (0.998)

 Response to temperature stimulus 16 15 (93.8%) 0.025 (0.813) 0.048 (0.528) 0.007 (0.961)

  Negative regulation of 
transferase activity 35 34 (97.1%) 0.025 (0.720) 0.007 (0.528) 0.022 (1.000)

 Kinase regulator activity 46 43 (93.5%) 0.030 (0.690) 0.016 (0.528) 0.014 (0.998)

  Positive regulation of t cell 
proliferation 13 12 (92.3%) 0.037 (0.934) 0.031 (0.528) 0.019 (1.000)

1. Significance was determined based on p < 0.05 calculated by all three tests.
2. Values in parentheses are FDR corrected.
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was -0.59 (p = 5.61 x 10-6). Result of linear model 
showed possessing one copy of risk allele of rs1063355 
could reduce 0.80 unit of log2 transformed HLA-DQB1 
mRNA level (p < 0.001, data not shown). The same trend 
was observed in RCC tumor tissue (data not shown). We 
further evaluated the correlation for all SNPs in 3′UTR of 
HLA-DQB1 where rs1063355 is located. Rs1063355 was 
in high LD with the imputed SNP which possessed the top 
significant GWAS and eQTL association (e.g. rs1063345, 
R2 = 0.99) in both tumor and normal tissues (Table S5). 
To corroborate these findings, we used public MuTHER 
dataset for replication. It supported our findings that  

HLA-DQB1 was under-expressed in lymphoblastoid cell 
lines, adipose tissues, and skin tissues of subjects with the 
AA genotype of rs1063355 compared to subjects with the 
AC or CC genotype. The correlations remained significant 
in permutation test for three types of tissue (Figure 4).

DISCUSSION

To our knowledge, this is the first study to use 
multilevel approaches including discovery analysis 
of GWAS, gene expression correlation analyses, and 

Table 2: VEGAS gene-based test results of the antigen processing and presentation pathway and 
gene expression comparison between paired RCC and adjacent normal tissues

Gene expression level2 (mean ± SD)

Gene Chromosome No. of SNPs 
mapped to gene

PVEGAS
1 Normal 

tissue
RCCtissue Fold 

change3
P value4

HLA-DQA1 6 11 0.0039(0.094) 9.30(1.31) 10.91(1.48) 1.17 3.92E-08

CTSL1 9 16 0.0048(0.094) 10.09(0.79) 10.40(1.11) 1.03 0.076

HLA-DRB1 6 8 0.0051(0.094) 8.24(2.10) 9.04(2.55) 1.10 5.61E-04

HLA-DQB1 6 7 0.0082(0.113) 7.20(1.17) 8.69(1.72) 1.21 5.00E-09

PDIA3 15 2 0.0120(0.133) N.A. N.A. N.A. N.A.

PSME3 17 1 0.0181(0.167) 8.60(0.70) 8.16(0.70) 0.95 2.59E-06

HLA-F 6 25 0.0378(0.299) 8.18(0.97) 9.68(1.15) 1.18 2.67E-11

CREB1 2 9 0.0436(0.299) 7.00(0.53) 7.14(0.59) 1.02 0.103

HLA-DQA1: major histocompatibility complex, class II, DQ alpha 1.
CTSL1: cathepsin L1.
HLA-DRB1: major histocompatibility complex, class II, DR beta 1.
HLA-DQB1: major histocompatibility complex, class II, DQ beta 1.
PDIA3: protein disulfide isomerase family A, member 3.
PSME3: proteasome activator subunit 3.
HLA-F: major histocompatibility complex, class I, F.
CREB1: cAMP responsive element binding protein 1.
1 PVEGAS was obtained using VEGAS, corresponding q value was listed in the parenthesis.
2 Expression data were quantile normalized and log2 transformed.
3 Fold change= RCC/Normal, based on mean of log2 transformed data.
4 P value was calculated by paired Student’s t-test.  
N.A.: Data not available.

Table 3: Validation of SNPs in antigen process and presentation pathway
SNP Nearby Gene Minor MAF§ OR (95%CI)¶ P value Higgins’ I2 Pheterogeneity

rs1063355 HLA-DQB1

MDA A 0.44/0.40 1.19 (1.05–1.34) 0.007

NCI A 0.44/0.43 1.11 (1.01–1.23) 0.039

Overall 1.14 (1.06–1.23) 9.15E-4& 0.0% 0.427

§ MAF: minor allele frequency in cases/control.
¶ Adjusted for age (5-year intervals), and sex under additive model.
& Meta p-value is calculated assuming fixed effect model.
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online resources to investigate the aggregated effect of 
common SNPs in relation to RCC etiology with respect 
to defined pathways and genes. To assure reliability, three 
analytical algorithms and four commonly used pathway 
collection databases were applied in pathway analysis with 
correction for multiple comparisons. Our identification 
of the antigen processing and presentation pathway and 
HLA genes supports an important role for the immune 
system in RCC etiology. The validation on SNP level and 
eQTL analysis identified a new potential susceptibility 
region and a putative functional SNP which could help 
to elucidate the biological mechanisms underlying RCC 
development.

The results of VEGAS and the gene expression level 
comparison between RCC tumor and adjacent normal 
tissues indicated that major histocompatibility complex 
(MHC) loci, in particular HLA-DQB1, may contribute to 
RCC etiology. HLA-DQB1 belongs to HLA class II beta 
chain paralogs which, along with an alpha chain, forms the 
HLA class II heterodimer. The HLA-DQ protein is usually 
expressed on the surface of antigen presenting cells and 
plays a critical role in preparing and presenting peptides 
to T cells. The difference in gene expression levels could 
be related to local copy number variation. However, we 

did not find any alteration in the region in either our own 
data or in TCGA data, indicating that the expression may 
be affected through other mechanisms. Considering the 
location of rs1063355, we hypothesized that this SNP or 
linked SNPs were associated with the expression level of 
HLA-DQB1.

Interestingly, the contrasting results of associations 
between rs1063355, HLA-DQB1 expression, and RCC 
risk suggested a complex relationship. Since the risk 
variant (allele A) of rs1063355 were associated with 
reduced HLA-DQB1 expression, our results suggested 
that underexpression of HLA-DQB1 may increase the 
RCC risk. In contrast, overexpression of HLA-DQB1 
found in RCC tissue revealed the complexity of abnormal 
alterations in tumor tissue. The inflammation that occurs 
during cancer development may actually induce MHC 
expression in tissues or tumor cells [20, 21], which may 
support the observation of higher expression level of 
HLA-DQB1 in RCC tissues. Thus, we hypothesized that 
reduced HLA-DQB1 expression may play a crucial role 
to avoid immune surveillance during tumorigenesis, but 
overexpression may be an adaptive response once the 
transformation is complete. Future functional assays are 
needed to elucidate this sophisticated framework.

Figure 1: Study flowchart. 
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Regions on or close to HLA-DQB1 (6p21.3) were 
frequently identified by GWAS as susceptibility loci for 
many complex diseases, such as lymphoma [22], type 1 
diabetes [23], asthma [24], systemic sclerosis [25], and 
narcolepsy [26]. The intergenic region between HLA-
DQB1 and HLA-DQB2 was linked to IgA nephropathy in 
one GWAS study [27]; but to date no epidemiologic study 
has linked IgA nephropathy to kidney malignancy. In 
addition, one study has reported that multi-loci haplotypes 

were associated with a risk for cervical cancer [28]. The 
region was also found to be associated with hepatitis 
B virus–related hepatocellular carcinoma risk in Chinese 
population [29].

The present study has numerous strengths, including 
large sample sizes for the discovery and replication 
populations. Additionally, we were able to validate the 
finding at the SNP and gene expression level. We were 
also able to validate the eQTL analyses by using a publicly 

Figure 2: Boxplot of HLA-DQB1 mRNA levels in RCC and adjacent normal tissue as reported in five datasets available 
in the Oncomine database. The probe selected for all datasets (212998_×_at) was defined in Oncomine. (The sixth study was not 
included here because its platform was not pre-defined in Oncomine, although the change in the same direction was detected.) A, Lenburg. 
B, Beroukhim. C, Gumz. D, Yusenko. E, Jones. Circles stand for outliers. The figures were directly downloaded from Oncomine.
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Figure 3: Boxplot of HLA-DQB1 mRNA level categorized by rs1063355 genotype. Both genotyping and gene expression data 
were available 51 pairs of RCC and adjacent normal tissues collected at MD Anderson. The genotype was CC for 18 study subjects, AC for 
22, and AA for 11. Spearman’s r = −0.59, Ptrend = 5.61E-6 in normal tissue. The same trend was observed in tumor tissue. The coefficient 
obtained from simple linear regression was -0.80 (95% CI = −1.18 to −0.41, p < 0.001). The expression level of HLA-DQB1 was log2 
transformed. Circles stand for outliers. 
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available dataset. Importantly, the SNPs we identified 
may regulate HLA-DQB1 transcription level in cis. 
However, limitations of this study warrant consideration. 
Specifically, the biological mechanism that describes 
how this SNP affects HLA-DQB1 expression was not 
investigated and remains unknown. It is possible that 
other linked functional SNPs, rather than rs1063355, 
contribute to the difference in HLA-DQB1 expression 
level observed in individuals with distinct genotypes. In 
addition, the identified pathway and genes showed modest 
significance when multiple testing is considered, and only 
one SNP in antigen processing and presentation pathway 
was significant in NCI samples with moderate p value. 
Nevertheless, there is biological plausibility for the 
association of HLA-DQB1 and cancer risk. The evidence 
that rs1063355 or other SNPs in linkage disequilibrium 
could be potentially functional and driving the association, 
is promising. Thus, the locus remains interesting to be 
further investigated.

In conclusion, the results of multilevel analyses in 
this study support the idea that the HLA class II region 
may influence RCC tumorigenesis. Moreover, we found 
a variant in HLA-DQB1, replicated in an independent 
population, could alter cancer risk in a cis-eQTL manner. 
However, overexpression of HLA-DQB1 in RCC tissue 
revealed the complexity of the biological mechanisms 
underlying the process of tumor formation. Further studies 

are required to validate our findings. Functional assays are 
needed to elucidate the biological mechanism involved in 
the regulation of HLA-DQB1 expression and the SNP’s 
role in RCC etiology.

MATERIALS AND METHODS

Figure 1 illustrates the steps used in this study to 
identify potential susceptibility loci for RCC.

Study population

The details of the study population for the RCC 
GWAS conducted previously have been described 
elsewhere [16]. Briefly, newly diagnosed and histologically 
confirmed RCC cases and healthy control subjects were 
recruited from an ongoing RCC case-control study that 
began in 2002 at The University of Texas MD Anderson 
Cancer Center in Houston, TX. The recruitment of control 
subjects in Texas was performed via random digital dialing 
[30]. An additional set of control subjects from an ongoing 
bladder cancer case-control study, who were involved in 
a previously published GWAS of bladder cancer, was 
also included [31]. Recruitment was not restricted by age, 
sex, ethnicity, or cancer stage. A control subject had to 
have lived for no less than 1 year in the same county or 

Figure 4: eQTL analysis for rs1063355 and HLA-DQB1 in a public dataset. The MuTHER pilot study collected adipose tissue 
(A), lymphoblastoid cell lines (L), and skin tissue (S) from healthy Caucasian female twins. All figures were directly downloaded from 
Genevar. Rho: Spearman’s correlation coefficient. P: Corresponding p value. Pemp: Empirical p values calculated from 10,000 permutations. 
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socio-economically matched surrounding counties where 
a case subject resided. Healthy controls were individuals 
who had no history of cancer (except non-melanoma skin 
cancer) at the time of recruitment. Cases and controls were 
frequency matched by age (± 5 years), sex, and county 
of residence. However, only cases and controls who self-
reported to have European ancestry were included in the 
analysis of our RCC GWAS study. Informed consent 
had been obtained from all study participants before 
epidemiological data and blood samples were collected 
by trained MD Anderson staff interviewers. The study 
was approved by the Institutional Review Board at the 
MD Anderson Cancer Center, and informed consent was 
obtained from all participants for discovery set.

Validation population

We used the U.S. National Cancer Institute (NCI) 
RCC GWAS to validate statistically significant SNPs 
(p < 0.05) identified from the MD Anderson GWAS. 
The NCI participants had been recruited from 4 studies 
[Prostate, Lung, Colorectal and Ovarian Cancer Screening 
Trial (PLCO), American Cancer Society Cancer Prevention 
Study II Nutrition Cohort (CPS-II), Alpha-Tocopherol, 
Beta-Carotene Cancer Prevention Study (ATBC), and 
National Cancer Institute United States Kidney Cancer 
Study (USKC)] and informed consent had been collected 
from each participant. After the quality control procedures 
were completed, the study comprised of 1,311 cases 
and 3,424 controls. The details of the study design and 
population characteristics were previously described [15]. 
Informed consent was obtained from all participants, and 
each study was approved by the appropriate institutional 
review boards and/or ethics committees for replication set.

Genotyping

Information on the platforms used for the primary 
scan of our population and the quality controls were 
described previously [16]. In short, the primary scan for 
the discovery population was performed at MD Anderson 
using HumanHap610/660W BeadChips (Illumina, 
San Diego, CA, USA) [16, 31]. After quality control 
procedures were completed, 2,410 samples, including 
894 RCC cases and 1,516 healthy controls were available 
for analysis. A total of 533,191 SNPs were included in 
the final analysis. There was no evidence of differences 
in population substructure (inflation factor λ = 1.037). 
HumanHap 500, 610, or 660W BeadChips were used in 
the primary scan of the NCI population; details can be 
found in a previous publication [15].

Gene expression, eQTL analysis, copy number 
variation, and mutation spectrum in tissues

Gene expression assays were performed in 51 
pairs of RCC tumor tissue and adjacent normal tissue 

collected from patients who had been recruited to our 
RCC case-control study. Total RNA was isolated using 
the mirVana RNA isolation kit (Ambion, Austin, TX) 
according to the standard protocol from approximately 20 
mg of flash-frozen tissue, which was placed in RNAlater-
ICE frozen tissue transition solution (Ambion) at -20°C. 
HumanHT-12 v2 Expression BeadChip kits (Illumina) was 
used to profile the whole genome-wide gene expression 
and were read using a BeadStation 500 scanner (Illumina). 
Arrays were quantile normalized and the data were log2 
transformed. To corroborate our results, we also checked 
genes from top significant pathway in Oncomine. Six 
studies were available for the analysis in Oncomine  
[32–37]. For robustness of each gene, we compared the 
number of studies with significantly altered expression 
level, average p-value, and median rank (sort by  
p-value) among genes across all datasets in Oncomine. 
We also used USCS Cancer Browser to explore the gene 
expression level for our genes in the TCGA database.

We conducted expression quantitative trait loci 
(eQTL) analysis for our candidate SNP using mRNA 
microarray data generated from paired RCC tumor and 
adjacent normal tissues. To show rs1063355 was the best 
GWAS and eQTL SNP in the region, we also assessed the 
correlation for all imputed and genotyped SNPs physically 
close to it (chromosomal region of 3′UTR of HLA-DQB1). 
The public resource Genevar [38] contains 4 eQTL studies 
which could be used for the replication set. However, 
only the MuTHER pilot study [39] has both rs1063355 
genotyping and HLA-DQB1 expression data available 
for the analysis. Three types of tissues were collected 
including lymphoblastoid cell lines, adiposity tissues, and 
skin tissues in the MuTHER pilot study. We checked the 
Spearman’s correlation of SNP-gene within a 1Mb region 
where the SNPs is located for all three types of tissue.

We checked the copy number variation in the region 
identified using the data produced by our group using a 
method described previously [40]. TCGA Renal 2 data 
implemented in Oncomine was also used for assessing the 
gene copy number variation. It compared copy number 
of genes among 489 clear cell renal cell carcinoma, 43 
papillary renal cell carcinoma, 441 paired normal kidney 
tissue samples and 98 paired normal blood specimen.

Information on the somatic mutations of significant 
genes identified in our analyses can be found in the 
Catalogue of Somatic Mutations in Cancer (COSMIC).

SNP function annotations

To predict the putative function of rs1063355, we 
used HaploReg [41] and RegulomeDB [42] to analyze the 
ENCODE data [43].

Statistical analysis

We applied three gene set enrichment analysis 
(GSEA) tools to four well-characterized pathway 
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databases. Gene-based tests were performed for the 
most promising pathway we identified. Gene expression 
levels were compared between paired RCC and adjacent 
normal tissue. We sought validation from SNP level in an 
independent NCI RCC GWAS.

Pathway Databases. Four frequently used pathway 
databases (KEGG, BioCarta, Reactome, and GO) were 
downloaded from the Molecular Signatures Database by 
selecting “C2: Curated gene sets” (for KEGG, BioCarta, 
and Reactome) or “C5: GO gene sets” (for GO). Three types 
of datasets were available from the Molecular Signatures 
Database; we used the file contained “Entrez Gene IDs”. 
This dataset contained 186, 217, 430 and 1454 gene sets in 
KEGG, BioCarta, Reactome, and GO, respectively.

Gene Annotation. We used the gene annotation 
file “NCBI Build 36” from the National Center for 
Biotechnology Information website. This file provided 
gene location information.

SNP Mapping to Genes. We used the University of 
California, Santa Cruz Genome Browser to retrieve the 
locus information for each SNP of interest by selecting 
“NCBI 36/hg 18” and “SNP 129”. A total of 533,126 
SNPs was matched with the database and their positions 
in a specific chromosome were successfully obtained. 
We restricted our analysis to autosomal chromosomes, 
such that 12,440 SNPs in chromosome X and 17 SNPs 
in chromosome Y were removed from the analysis. Thus, 
520,669 SNPs remained to be mapped to specific genes. 
SNPs within 20 kb upstream or downstream of a gene 
were considered to belong to that gene; some SNPs were 
mapped to more than one gene because of overlapping 
sequences. Due to the design of the array, not all the genes 
located in a pathway were captured by our GWAS data.

GSEA Tools. GenGen [44]. The methodology of 
GenGen has been described previously. The concept was 
inspired by GSEA for microarray data. In this approach, an 
enrichment score is calculated. One thousand permutations 
are performed, and the permutation-based (1,000-time) 
false discovery rate is calculated to assess the issue of 
multiple comparisons.

SNP Ratio Test [45]. This test calculates the 
proportion of significant SNPs in a specified pathway. 
The empirical p-value is calculated based on 1,000 
permutations. We also calculated the false discovery rate 
for empirical p-values.

ALIGATOR [46]. This approach counts the number 
of significant genes represented by significant SNPs. Each 
significant gene is counted only once regardless of how 
many significant SNPs map to that gene. A bootstrap 
approach (repeated 1,000 times) is applied to correct the 
empirical p-values.

In addition, we adjusted the size of the pathway by 
confining the number of genes to between 10 and 200. 
Finally, 180, 206, 402 and 1,226 pathways were included 
in the analysis for the KEGG, BioCarta, Reactome, and 
GO databases, respectively. A pathway was considered 

significant if the p-value was < 0.05 for all three GSEA 
algorithms. We further adjusted for top 10 principal 
components (Figure S1)  in the model and performed the 
same analyses. Principal component analysis was conducted 
using EIGENSTRAT [47].

Versatile Gene-Based Association Study (VEGAS). 
For the gene-based test, we used VEGAS [48] to 
investigate aggregated signals within specific genes 
located in the most promising pathway. SNP level  
p-values were used as input into the program to produce 
an empirical gene-based p-value by simulation.

Validation of SNPs in a Pathway. We extracted 
all SNPs mapped to the most promising pathway. 
Multivariable logistic regression adjusted for age (in 
5-year intervals) and sex were conducted for each SNP in 
an additive model. We sought to replicate only significant 
SNPs (p < 0.05). From a subset of SNPs located in the 
same linkage disequilibrium block (R2 > 0.8), the SNP 
with the smallest p value was selected to represent the 
block. Finally, 48 SNPs were selected for validation with 
the NCI RCC GWAS population. Results of two studies 
were pooled by meta-analysis. Selection of a fixed-
effect model depended on the results of Cochran’s Q test 
for heterogeneity being Pheterogeneity ≥ 0.05; otherwise, a 
random-effect model would be adopted. The per-allele 
trend effect was estimated and the P value was computed 
using inverse variance weighting.

Other Statistical Analyses. For data generated from 
samples collected by our group, paired t test was used 
to compare gene expression between paired RCC and 
adjacent normal tissues. Spearman’s rank correlation, 
linear model and corresponding p-values were calculated 
for SNPs and genes of interest. Imputation of the +/–1 Mb 
region of where a SNP was located was conducted with 
IMPUTE2 [49, 50]. After quality control, 10,909 SNPs 
(Imputation Score ≥ 0.5, MAF > 0.01, HWE p-value 
< 0.001, genotype call rate > 0.90) were found in a ± 1Mb 
region up/downstream of where rs1063355 is located. All 
statistical analyses were done using Stata 10.0 (College 
Station, TX, USA). All correlation association analyses 
were conducted with respect to the minor allele.

Web resources

Oncomine: https://www.oncomine.org
USCS Cancer Browser: https://genome-cancer.ucsc.

edu/proj/site/hgHeatmap/
Genome Browser: http://genome.ucsc.edu/
COSMIC: http://cancer.sanger.ac.uk/cancergenome/

projects/cosmic/ 
Molecular Signatures Database: http://www.

broadinstitute.org/gsea/msigdb/index.jsp 
NCBI: http://www.ncbi.nlm.nih.gov/ VEGAS: 

http://gump.qimr.edu.au/VEGAS/ 
IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/

impute_v2.html#home
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