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AbstrAct:
Surprisingly little is known about the underlying genetic events that trigger the 
progression of a normal cell into a cancerous cell. We recently developed a YB-1-
driven model of pre-malignancy where we uncovered that the oncogene promotes 
genomic instability through cell cycle checkpoint slippage and centrosome 
amplification. In this research perspective, we describe a possible mechanism 
by which YB-1 instigates preneoplastic transformation. Using Kinex antibody 
microarrays with coverage of 800 proteins, we discovered that pre-malignant cells 
exhibit deregulated signal transduction along the HER2-MAPK-RSK axis. We will 
discuss the implications of these finding in regard to early intervention strategies.

IntroductIon

One of the most critical issues facing breast cancer 
treatment is late detection when the odds of long-term 
disease free survival are the lowest. The earliest lesions 
and genetic transitions usually occur years before a 
tumour is detected by palpation or mammography [1]. 
While early stage ductal carcinoma in situ (DCIS) is 
considered a non-life-threatening disease with a 10-year 
survival rate of about 90%, this drops dramatically to 
well under 10% when the cancer is detected at later stages 
[2]. This is largely a result of tumour cells disseminating 
to form micrometastases in distant organs as well as 
acquiring resistance toward chemotherapeutics [3, 4]. 
Accordingly, it has become imperative to understand the 
earliest events that trigger the progression of a normal cell 
into a malignant cell. The identification of biomarkers 
and development of selective therapeutics targeting key 
pathways in pre-malignant cells will represent a holy grail 
in breast cancer treatment and prevention. 

A number of obstacles have hindered the study of 
early tumour progression. First and foremost is the lack of 
in vitro models. One approach to tackling this problem has 
been to introduce genes into primary human mammary 
epithelial cells (HMECs) in an attempt to transform them. 
Expression of the SV40 large-T antigen, the telomerase 
catalytic subunit, and H-Ras for example yields HMECs 
with the capacity to form tumours when injected into 

immunodeficient mice [5, 6]. Modeling pre-malignancy 
in vitro is complex and has only been made possible in 
the last decade through the advent of three-dimensional 
acini cultures. This model provides a context in which it 
is feasible to identify genes and dissect the mechanisms 
necessary to produce phenotypic alterations similar to 
those observed during malignant progression. These can 
include luminal filling, loss of polarization, and invasive 
behaviour [7, 8]. Taken together, while progress has been 
made, work is still required to accurately model pre-
malignancy in order to understand the events that drive a 
cell towards a cancer fate. Moving forward these models 
can be used to understand the role of oncogenes that are 
more common to breast cancer.

Yb-1 In pre-mAlIgnAncY And 
breAst cAncer predIsposItIon

The importance of Y-box binding protein-1 (YB-
1) in the maintenance of breast cancer cell lines is well 
documented [9-12]. However, its role in cancer initiation 
has, until recently, been unappreciated [13]. Our lab 
developed and characterized an in vitro model of pre-
malignancy following conditional YB-1 expression in 
genetically stable HMECs. We discovered that the sole 
expression of YB-1 was sufficient to prime cells for 
malignancy by promoting cell cycle checkpoint slippage, 
which led to numerical and structural chromosomal 
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aberrations. Interestingly, we elucidated that these genetic 
changes were not stochastic but there was a propensity 
for HER2 amplification in a subset of cells [13]. In many 
respects our model mirrors tumour progression in YB-1 
transgenic mice. For instance, the expression of YB-1 
both in vitro and in mice imposed genetic instability that 
materialized as centrosome amplification and aneuploidy 
[13, 14]. The clear advantage to using an in vitro model is 
that it takes only days to promote chromosomal instability 
whereas generating preneoplastic lesions in YB-1 
transgenic mice can take 6-8 months (that is following the 
time-intensive effort of establishing the transgenic mouse 
colonies). It also provides a rapid screening platform for 
identifying agents that may block YB-1-mediated changes 
at a preneoplastic stage of breast cancer progression.

An immediate question at hand is whether these 
findings translate into risk associated with the development 
of breast cancer in women. While it is well established that 
YB-1 is found in approximately 50% of invasive breast 
cancers [12], its expression has not been examined to any 
great depth in DCIS. A large gap in the literature exists 
with regard to the frequency of YB-1 expression in DCIS 
and whether it is associated with high-grade lesions and/
or the eventual development of invasive carcinomas. In a 
small study by Dahl and colleagues, YB-1 was expressed 
in 6/8 DCIS [15]. This line of investigation should be 
followed up independently and with a larger number of 
samples. In addition, probing the expression of YB-1 in 
a breast cancer progression series, such as that developed 
in the human 21T breast epithelial cells [16] or murine 
67NR/4T1 cells [17], will provide much needed insight 
into the role of the oncogene at each stage of cancer 
evolution. 

Unlike in hereditary breast cancer, the genetic factors 
that predispose women to spontaneous breast cancer are 
not well defined. Based on its role in pre-malignancy, 
we believe that YB-1 could play a fundamental role in 
predisposing individuals to cancer given the evidence 
that it instills genomic instability and it has the capacity 
to transform normal mammary epithelial cells. Typically 
YB-1 is not expressed in differentiated breast epithelial 
cells. Yet for reasons that are still not understood, its 
expression is induced in tumours. It is possible that there is 
an expansion of progenitor cells that permits the induction 
of YB-1. This idea arises from the evidence that YB-1 is 
detectable at low levels in normal mammary progenitor 
cells in healthy, disease-free women [18]. Perhaps these 
cells lay dormant for many years until they acquire 
additional mutations in oncogenes and tumour suppressor 
genes. Interestingly, p16INK4a has been reported to be 
repressed in a small subset of cells from women who have 
undergone reduction mammoplasty [19, 20]. Compelling 
evidence suggests that these cells are the precursors 
to malignancy and simply require a second oncogenic 
hit to become transformed [21]. It will be interesting 
to ascertain if this population of cells overlaps with the 

cells expressing YB-1. This is presently an understudied 
area of research that if substantiated could lead to a new 
understanding of the etiology of breast cancer and its role 
in neoplastic progression.

pre-mAlIgnAnt cells cAn be 
chArActerIzed bY deregulAted 
her2/mApK/rsK sIgnAlIng

To aid in risk assessment and elimination of 
pre-malignant cells, there has been much interest in 
uncovering signaling pathways and nodes principal to 
early transformation. To begin to understand global 
changes in protein expression following YB-1 expression 
in HMECs we utilized the Kinexus Kinex antibody 
microarray platform. This allowed us to query changes 
in the expression and activity of over 800 proteins 
concurrently [13]. From this unbiased proteomics array, 
we have identified an astounding enhancement in signal 
transduction along the HER2-p90 ribosomal S6 kinase 
(RSK) arm of the mitogen-activated protein kinase 
(MAPK) pathway (Figure 1). In support of this, YB-1 
seems to focally regulate genes specific to the MAPK 
family [22]. The MAPK pathway is synonymous with 
cell proliferation and it is deregulated in nearly one 
third of human cancers [23]. Despite this, very little is 
known about the importance of MAPK signaling in pre-
malignancy.

ErbB2 (HER2) is an oncogene that leads to the 
development of mammary tumours in mice [24]. In 
breast cancer HER2 is overexpressed in about 30% of 
cases where it is correlated with poor survival [25, 26]. 
In our model of pre-malignancy, we detected a 196% 
enhancement in activated HER2Y1248, which is associated 
with cell migration and invasion via activation of PLKγ 
and the diacylglycerol pathway (Figure 1) [27, 28]. 
Moreover, we identified a subset of cells with HER2 
amplification; further, stressing the dependence on 
HER2 signaling in this model [13]. In clinical samples, 
upregulation of HER2 can be readily detected in breast 
tissues that demonstrate early signs of transformation 
but have not been completely transformed [29]. This 
suggests that overexpression of HER2 is an important 
initializing event in pre-malignant breast disease. The 
increased proliferation and cell motility associated with 
overexpression of the gene are hypothesized to contribute 
greatly to malignancy. In support of this, patients with 
low-level HER2 gene amplification have a two- to three-
fold increased risk of developing high-grade inflammatory 
breast cancer [30]. Importantly, the fact that HER2 
activation in pre-malignant clinical samples correlates 
with our in vitro model suggests that we have engineered 
an accurate representation of pre-malignancy.  

The discovery that pre-malignant cells overexpress 
HER2 provides an opportunity for therapeutic 
intervention. As both EGFR and HER2 were elevated as a 
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consequence of YB-1 induction in our HMEC model [13], 
treatment with lapatinib might be a promising strategy 
for targeting these cells. This second-generation tyrosine 
kinase inhibitor binds to the ATP-binding pocket of EGFR/
HER2 dimers to prevent auto-phosphorylation and, in 
turn, activation of MAPK signaling [31]. Lapatinib has 
also been shown to prevent the development of estrogen 
receptor negative mammary tumourigenesis [32], which 
is an important step forward given the current lack of 
therapies for these tumours. Upon further consideration 
of the signaling events that are altered as a consequence 
of YB-1 induction, lapatinib may or may not prevent the 
growth of preneoplastic cells due to changes downstream 
such as SRC and/or RSK activation.

src ActIvAtIon As An eArlY event 
In neoplAstIc conversIon

SRC exhibits classic transforming properties by 
activating signaling through the RAS pathway. The fact 
that it is activated following YB-1 induction provides 
further insight into the molecular events that cooperate 
to achieve cellular transformation and cancer initiation. 
It has recently been reported that SRC activation is a 
culprit in mediating resistance to the HER2 targeting 
agent trastuzumab [33]. SRC is indeed activated by HER2 

[34] but also by several other growth factor receptors 
such as IGF-1R and the Met receptor [35, 36]. Given that 
it is a convergence point for several RTKs, which may 
be up-regulated as a consequence of YB-1 induction, it 
would seem that SRC inhibitors such as saracratinib could 
potentially be used as a strategy for intervention.

rsK functIons As A sIgnAlIng 
node In pre-mAlIgnAnt cells

Following YB-1 expression, we measured a 269% 
increase in activated RSK1/2 phosphorylated at the Ser-
380/386 residue (Figure 1). The current dogma of RSK 
activation suggests that it is first phosphorylated by 
ERK1/2. This allows for auto-phosphorylation of Ser-
380/386, providing a docking site for 3-phosphoinositide-
dependent protein kinase 1 (PDK1) and complete RSK 
activation [37]. The RSKs, which are overexpressed in a 
plethora of cancers, function as principal signaling nodes 
orchestrating the expression of transcription factors, 
anti-apoptotic factors, and cell cycle regulators [38, 39]. 
Notably, we uncovered significantly altered expression 
and/or activity of three RSK downstream targets in 
our pre-malignancy model: cAMP-responsive element 
binding proteinS129/S133 (CREB; 71%), glycogen synthase 
kinase-3βY279/Y216 (GSK3β; 177%), and IκBα/β (-60%). It is 

figure 1: signal transduction along the mApK/rsK pathway is altered in pre-malignant cells. Using the Kinexus Kinex 
antibody microarray, we uncovered an enhancement in signal transduction along the MAPK/RSK pathway following YB-1 induction in 
HMECs. Activation of HER2 led to phosphorylation of MEK and, in turn, RSK. Downstream RSK substrates with a role in cell survival 
and proliferation demonstrated altered expression and activity. Select therapeutic agents that could inhibit signaling at each level of the 
MAPK/RSK cascade were identified. The specific phosphorylation sites and the percent change in protein expression following a 72-hour 
YB-1 induction in HMECs (%CFC) are provided in the table. 
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probably not a coincidence that these changes function to 
promote cell survival and drive proliferation. Specifically, 
repression of GSK3β and the NFκB inhibitor IκBα/β 
via RSK-mediated phosphorylation would enhance cell 
cycle progression [40, 41]. On the other hand, CREB 
phosphorylation would yield increased transcription of 
pro-survival genes including Bcl2, Bcl-XL, and Mcl1[42]. 

The identification of RSK1/2 as a central signaling 
node in pre-malignancy makes it an enticing therapeutic 
target. To date, a number of ATP competitive inhibitors 
have been identified against RSKs including BI-D1870, 
SL0101, and kaempferol; however, none have been 
tested in clinical trials [38, 39, 43]. Kaempferol, a natural 
flavonoid, was one of the first RSK inhibitors to be described 
and has recently been shown to significantly reduce the 
risk of developing pancreatic cancer [44]. We envision 
that this could translate into breast cancer where the drug 
would be used for patients who have been diagnosed with 
DCIS and are at risk of subsequently developing invasive 
breast cancer. An alternative approach to targeting RSK 
activity would be to use small molecule inhibitors against 
PDK1, as it is an absolute requirement for RSK activation. 
Our lab has demonstrated that the PDK1 inhibitor OSU-
03012 prevented phosphorylation of RSK substrates [45]. 
Downstream of RSK, one could also indirectly influence 
signaling by blocking GSK3β with lithium chloride 
(Figure 1). RSK inhibitors (direct or indirect) could be 
considered for patients who had tumours with high YB-1 
expression in their primary tumour and as such would be 
at a greater risk of recurrence [12]. These inhibitors could 
thus be considered for protecting against the development 
of bilateral breast cancer occurrence. 

the her2-rsK-Yb-1 AxIs In tumour-
InItIAtIng cells

Recently, considerable research has been focused 
on dissecting the role of tumour initiating cells (TICs) 
during cancer progression and relapse. During the 
development of pre-malignancy in mice, the expression 
of YB-1 increased the TIC surface markers CD44 and 
CD49f. Likewise, ectopic expression of YB-1 in HMECs 
increased CD44 mRNA [10]. It is therefore tempting 
to speculate that YB-1 plays a prominent role in the 
emergence of TICs. This is substantiated by the fact that 
in a ChIP-on-chip analysis YB-1 was found bound to the 
promoters of stem cell associated genes, notably notch 
and wnt family numbers [18]. Moreover, our lab made the 
initial discovery that YB-1 binds to the HER2 promoter 
to activate gene transcription [46]. Interestingly, there is 
a well-established positive correlation between the stem 
cell marker ALDH and HER2 overexpression in breast 
cancer patients [47]. While Wicha and colleagues have 
characterized HER2 to regulate self-renewal and invasion 
of human mammary stem cells [48] the mechanism 
remains elusive. We postulate that as a consequence of 

HER2 overexpression and MAPK signal transduction, 
RSK activation and phosphorylation of its downstream 
targets, including YB-1, promote a TIC phenotype. In 
support of this hypothesis, the RSK substrate CREB 
is highly expressed in leukemia stem cells to enhance 
their proliferation [49, 50]. To deduce whether our pre-
malignant model has tumour-initiating capacity, the 
next logical step will be to inject these cells at limiting 
dilutions into mice to ascertain if they form tumours. We 
believe that YB-1 could represent a promising biomarker 
for the detection of TICs and possibly presents a novel 
therapeutic targeting opportunity. 

perspectIve

Given the numerous studies conducted over the past 
decades it appears that early detection of breast cancer 
provides the greatest opportunity for a cure. Along with 
this comes the need to understand what drives these early 
changes in cellular growth that lead to cancer. Accordingly, 
there is an insatiable need for in vitro models that accurately 
reproduce malignant progression. While pre-malignant 
and pre-invasive breast lesions are relatively common 
only a small percentage progress to high grade invasive 
breast cancer [51]. Therefore, important biological 
differences must exist between those that remain stable 
and those that progress into a cancer. By identifying 
and treating high-risk pre-malignant lesions there is 
the potential to prevent the emergence of invasive and 
metastatic breast cancer. We believe that YB-1 represents 
one of the most promising biomarkers for identification 
of pre-malignant cells with strong tumourigenic potential. 
The addiction of these cells to HER2 and RSK provides a 
therapeutic strategy for eliminating cancer in its infancy. 
With the rampant advancement in our understanding of 
pre-malignancy, the establishment of robust models, and 
the development of therapeutics that target these cells the 
potential to prevent breast cancer progression has never 
been greater.
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