
Oncotarget1594www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.3

MicroRNA regulation of molecular pathways as a generic 
mechanism and as a core disease phenotype

Rotem Ben-Hamo1, Sol Efroni1

1The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel

Correspondence to:
Sol Efroni, e-mail: sol.efroni@biu.ac.il
Keywords: microRNA, Signaling pathways, Cancer, Phenotype, Regulation

Received: August 27, 2014 Accepted: November 12, 2014 Published: January 22, 2015

ABSTRACT
The role of microRNAs as key regulators of a wide variety of fundamental cellular 

processes, such as apoptosis, differentiation, proliferation and cell cycle is increasingly 
recognized in most aspects of biology and biomedicine. Accretion of results from 
multiple microRNA studies over multiple pathway networks, led us to hypothesize 
that microRNAs target molecular pathways. As we show here, this is a network-
wide phenomenon. The work presented, uses statistical tools that show how single 
microRNAs target molecular pathways. We demonstrate that this targeting could not 
be the result of random associations and cannot be the result of the sheer numeracy of 
microRNA targets. Furthermore, the strongest evidence for the association microRNA-
pathway, is in a demonstration of the way by which these associations are disease-
relevant. In our analyses we study ten different types of cancer involving thousands 
of samples, and show that the identified microRNA–pathway associations demonstrate 
a clinical affiliation and an ability to stratify patients. The work presented here shows 
the first evidence for a mechanism of microRNAs-pathway generic regulation. This 
regulation is tightly associated with clinical phenotype. The presented approach may 
catalyze targeted treatment through exposure of hidden regulatory mechanisms and 
a systems-medicine view of clinical observation.

INTRODUCTION

MicroRNAs (miRNAs) are small, endogenous 
non-coding RNA molecules that control gene-expression 
by inhibiting translation or inducing cleavage of target 
mRNAs. The role of miRNAs as key regulatory molecules 
that control a wide variety of fundamental cellular 
processes, such as proliferation, death, differentiation, 
motility, invasiveness, etc., has been demonstrated 
[1, 2]. MiRNAs are aberrantly expressed in cancer 
tissues and the connection between deregulated miRNAs 
and the inhibition of tumor suppressor genes in cancer 
is well established [3, 4]. Further, several studies have 
demonstrated a potential utility of miRNA-based therapy 
in cancer [5–8]. A striking example is the use of anti-
miR-21 in breast cancer, which led to suppression of both 
cell growth in vitro, as well as tumor growth in vivo [9]. 
MiRNAs’ potential to act both as therapeutic agents and 
as disease biomarker places this family of non-coding 
RNAs at the forefront of biomedical interest. Cellular 
function and cellular pathways are thus affected by the 

regulatory function of miRNAs. The most studied of these 
processes include development, apoptosis, differentiation, 
and other oncogenic related processes [10]. A possible 
explanation for the dominating influence of miRNAs 
might therefore be the control, by a single miRNA, over 
an intricate pathway, through targeting multiple mRNAs 
of this specific cellular pathway. It is recognized, that 
one miRNA may be simultaneously targeting several 
mRNAs. These mRNAs could be members of a cascade 
functioning towards a functional endpoint in the cell, 
through mutual involvement in the same cellular signaling 
pathways or in the crosstalk between such pathways [11]. 
For example, miR-106a directly down regulates ULK1 
mRNA levels in acute myeloid leukemia (AML) cells, 
and can also target other members of the ULK1 complex 
such as mAtg13 and FIP200 [12]. Other examples include 
Lu et al. [13] demonstration of microRNA-21 as down 
regulating the IL-12/IFN-γ pathway in lung cancer, and 
a work describing microRNA-7 as targeting 3-kinase/Akt 
pathway in hepatocellular carcinoma and Glioblastoma 
[14, 15]. Multiple targeting may be considered in view 
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of how microRNA-200 functions as a multifunctional 
tumor suppressor in meningiomas through multiple, 
simultaneous, effects on the E-cadherin and Wnt/β-
catenin signaling pathways [16]. The Pten/Akt pathway 
demonstrated inhibition in response to microRNA-1 [17] 
while the C/EBP-α–PU.1 pathway has been suggested to 
be regulated by microRNA-124 [18]. These important 
studies conceptually converge to raise the question of 
generality of this phenomenon: what is the breadth of this 
biological effect?

To answer this question, we analyzed a 
comprehensive collection of 357 pathways (137 NCI/
Nature curated pathways and 220 pathways imported 
from the Biocarta database) from the National Cancer 
Institute’s Pathway Interaction Database (PID) [19], which 
together comprise of 1460 genes. Using information on 
the complete collection of documented miRNAs - their 
predicted and validated target genes - we combined 
miRNA data and pathway data to identify, for each 
pathway, a single miRNA that potentially targets the 
pathway. The decision is based on statistical methods 
described below, and initially we demonstrate, per each 
miR-pathway, that this targeting is statistically significant. 
Following these results and utilizing them, we follow 
relations between identified miRNAs and their pathway 
targets and show that this targeting is instrumental in 
phenotypic stratification over a large collection of different 
cancer types.

As mentioned above, a critical role for miRNAs in 
cancer has been established. Further, multiple targeting of 
mRNAs, by a single miRNA, has also been universally 
demonstrated; the transition from multiple, disengaged, 
mRNA targets, to an hypothesis about miRNA and 
functional pathways has been raised, but has not yet been 
demonstrated. Using computational methods, we reveal 
significant associations between known curated pathways 
and specific miRNAs. We also show that this association 
is unique only to pathways. It is absent from otherwise 
dissociated random gene groups. Furthermore, and most 
important from a translational point of view, we show how 
these miRNA-Pathway associations are correlated with 
disease phenotypes, demonstrated in multiple datasets 
from ten different cancer types.

RESULTS

Pathways are targeted by individual miRNAs

We analyzed 357 curated pathways from the 
PID database [19] with overall 1460 genes. Initially, to 
partner these data with miRNA information, we used 8 
prediction tools collectively combined into miRWalk [20]. 
miRWalk is a tool that performs a comparative analysis 
of predicted and validated targets through the combined 
use of 8 prediction tools: miRnada, miRDB, miRWalk, 

RNAhybrid, PICTAR5, PITA, RNA22, TargetScan. From 
these results, we chose the set of pairs of miRNA-Gene 
that were predicted by at least two different tools. We then 
tagged each gene with its affiliated pathway and further 
affiliated, with every pathway, a single miRNA. This 
single miRNA has been chosen as the miRNA with the 
highest number of targets in that specific pathway (results 
shown in Supplementary Table 1). A single p-value has 
been associated with every pathway and it’s indicated 
miRNA. This p-value has been obtained using enrichment 
considerations, utilizing the hyper-geometric function (see 
Methods). All of the 357 pathways presented a significant 
FDR-adjusted p-value as can be seen in Figure 1(A) 
and Figure 1(B). FDR p-values were calculated using 
the procedure introduced by Storey, 2002 [21] for the 
correction of the p-values received by the hyper-geometric 
function.

Instead of setting the error rate at a particular level 
and estimating the rejection region, Storey et al. have 
proposed to fix the rejection region and estimate the error 
rate. This approach allows a more straightforward analysis 
of the problem.

Under multiple hypotheses testing, FDR procedures 
are designed to control the expected proportion of “false 
discoveries”.

To determine the strength and accuracy of the 
overall performance of the miRNA-pathway association 
using bootstrapping, we scrambled the data and randomly 
build 357 new pathways with a random size between 4–50 
genes (as in the original data).

Thus, we create an estimator for the hypothesis in 
order to test the hypothesis distance from a random, non-
pathway related, distribution. Figure 1(C) shows both the 
observed FDR distribution and random FDR distribution 
across 1000 iterations. The results presented here suggest 
that the observed phenomenon of miRNA-pathway 
association is indeed specific (and highly significant with 
p-value of 3.35e-037) to defined cellular networks and 
is not observed in a non-biologic random network. In 
addition, this analysis revealed that there are 4 microRNA 
(hsa-miR548c-3p, hsa-miR-548d-3p, hsa-miR-495, hsa-
miR-424) that are associated with 34% of the pathways 
(Supplementary Figure 1). Figure 2(A) presents the 
network created by these associations and Figure 2(B) 
shows the largest sub-network, composed of targets of 
hsa-miR-548c-3p.

GATA3 pathway in targeted by hsa-miR-532 in 
ER- breast cancer patients

To investigate if these findings – the association 
between a specific miRNA and a specific pathway – 
have biological meaningful implications, we used 
methods that quantify network behavior from gene 
expression data. To utilize these network graph 
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structures and the overlay of transcriptional data, 
we used the methods described in [22, 23]. These 
methods quantify expression behavior in specific sub-
networks (i.e. specific pathways or any other defined 
sub-network) and produce metrics of network behavior 
and disruption. The analysis takes into consideration 
the specific type of interaction (such as inhibition 
or promotion) and calculates the likelihood that the 
interaction occurs in the pathway Further details 
are given in [22, 24]. To apply this network-based 
methodology, we used the tool PathOlogist [25] which 
is an automated tool that uses gene-expression data 
(RMA levels) to deduce pathway metrics. Each sample 
was thus presented by its pathway metrics.

To utilize this hypothetical miRNA-pathway 
regulation in understanding disease mechanisms, we used 
three different breast cancer datasets for the purpose of 

finding a consistent and robust pathway that stratifies 
patients into two groups, based on their Estrogen Receptor 
(ER) status. Estrogens are important regulators of growth 
and differentiation in the normal mammary gland and 
are also important in the development and progression of 
breast carcinoma. Estrogens regulate gene expression via 
ER, however the details of estrogen effect on downstream 
gene targets, the role of cofactors, and cross-talk between 
other signaling pathways are far from fully understood 
[26–29]. The expression of ER has important implications 
in therapy [30–32].

Using the same procedure we previously describe 
[23, 33], we demonstrate that the pathway “GATA3 
Participate in Activating the Th2 Cytokine Genes 
Expression” demonstrated significantly higher activity 
levels in ER+ patients compared to ER- patients, across 
all three datasets, as can be seen from Figure 3(A).
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Figure 1: The observed enrichment of pathway targeting by miRNAs. (A) Pathways FDR-adjusted p-value distribution across 
observed data. The figure presents a histogram of the number of targeted pathways, as a function of their FDR-adjusted p-values. All of 
the pathways show an (adjusted) p-value of lower than 0.014. (B) p-value vs. q-value (FDR-adjusted p-value) plot. The plot presented here 
shows the significance of the results. (C) By randomizing gene groups, we measure the uniqueness of naturally observed findings displayed 
in panel (A). The figure shows the same histogram as the one presented in panel (A), with results from randomized by selecting pathway-
sized groups from the pool of genes that are members of any pathway. As the figure shows, over 1000 iterations present a clear separation 
from computationally observed findings with a significantly higher FDR-adjusted p-values (p-value = 3.35e-037).
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Gata3 has previously shown to over-express in ER+ 
patients, and it has also suggested to regulate genes critical 
to the hormone-responsive breast cancer phenotype [34–36]. 
However, here we are referring to the pathway called Gata3 
containing 13 different genes. Further, using the approach 
described above, we identified hsa-miR-532 as significantly 
targeting this GATA3 pathway. Specifically, hsa-miR-532 
targets 6 out of the 13 genes in the pathway, leading to a 
p-value of 3×10−5. By separately obtaining the correlation 
of the miRNA and the pathway in the two clinical groups 
- ER+ and ER-, we found a consistent negative correlation 
between the miRNA and the pathway in the ER- group of 
patients, in all three datasets; and, we found (close to) zero 
correlation between the miRNA and the GATA3 pathway in 
the ER+ group of patients, as can be seen in Figure 3(B) and 
3(C). These results are consistent with the previously known 
fact that the gene Gata3 is highly expressed in ER+ tumors. 
This observation may be explained by the finding we show 
here, a ‘broken’ control mechanism between Gata3 pathway 
and hsa-miR-532 in ER+ patients.

When we observe the set of pathway genes, predicted 
to be targeted by hsa-miR-532, we see the behavior 
presented in Figure 4. In the figure, we see the six genes 
that were predicted to be targeted by hsa-miR-532 indeed 
correlate with miR-532 in the ER- group, while they are not 

correlated with the miRNA in the ER+ group. Three out of 
the six genes in the GATA3 pathway positively correlate 
with miR-532. Previous works have shown how different 
miRNAs induce (and not reduce) gene expression [37–
40]. All genes in the pathway have the same expression 
distribution between the two groups (ER+ and ER-) except 
for the Gata3 gene, as can be seen in supplementary Figure 
2. Nevertheless, the difference in the correlation status of 
the six genes that were identified as possible targets and 
hsa-miR-532 between the groups is still present.

In conclusion, these findings point to possible 
control mechanisms, involved with regulation in ER- 
breast cancer patients. As demonstrated, these results are 
consistent and robust in their presentation of the GATA3 
pathway and its connection to hsa-miR-532. Further, the 
finding that this association is absent from ER+ tumors, 
suggests a possible intervention mechanism and calls for 
further study of a possibility of realigning regulation in 
breast cancer, from the harder-to-treat ER- phenotype, to 
the improved prognosis of ER+ phenotype.

Validation in independent data sets.

The hypothesis of whole pathway regulation by 
miRNAs, through the multiple targeting of mRNAs of the 
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Figure 2: The network created from the analysis. Every node represents either a pathway or a micro-RNA, edges represents the 
association between a micro-RNA and a pathway. The network composed out of 220 nodes and 186 edges and was visualized by Cytoscape.
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same cellular pathway, mandates validation beyond the 
originating datasets. To validate whether the phenomenon 
may be associated with phenotype, we applied the same 
pipeline described above to the most comprehensive 
currently obtainable dataset. As the requirements for this 
dataset include miRNA and mRNA expression levels, as 
well as well documented phenotypic affiliation, we were 
able to combine information from patients in studies of 
unrelated nine different types of cancer. These data sets 
were downloaded from TCGA: ovarian, liver, melanoma, 
kidney, thyroid, leukemia, stomach adenocarcinoma, 
bladder urothelial carcinoma and head and neck squamous 
cell carcinoma. For each of these tumor types we 
downloaded, from TCGA, gene expression information to 

test different phenotypes. The following list of phenotypes 
is the ones tested and are available in TCGA database: 
survival, breslaw depth value, stage and morphology. 
Iterating over pathways as described above, we identified, 
for every one of the datasets, a single pathway that stratified 
the patients. Then, for each of these pathways, through the 
enrichment method described above, we identified a single 
microRNA that targets the identified pathway in a specific 
manner (results shown in Table 1 and Figure 5). These 
results support the hypothesis of a regulation mechanism 
directing pathway behavior through a miRNA association. 
The overarching results, over tumor types, phenotypes and 
studies, indicate that these phenomena may be at the core 
of cancer cellular mechanisms.
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Figure 3: GATA3 pathway and hsa-miR-532 are associated selectively according to ER status. (A) GATA3 pathway 
activity level distributions in the ER- and the ER+ groups of patients in three independent datasets. As the figure demonstrates, the pathway 
is more active in the ER+ group as opposed to the ER- patients. (B) A significant negative correlation between the pathway and the miRNA 
is observed in ER- patients and is (C) absent from the ER+ group. The correlation was calculated between the miR expression levels and 
the pathway activity levels. Correlation between the miR and the pathway may indicate on a possible control mechanism (ER- patients), 
while a lack of correlation (such in the ER+ group of patients) may implies on a broken control.
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DISCUSSION

One possible major component involved with 
the reasoning of associating miRNAs and pathways is 
parallel gene expression. As every miRNA can potentially 
target hundreds of different transcripts simultaneously, by 
regulating the levels of a single miRNA, control over an 
entire pathway may be obtained. Previous studies have 
shown the vast target range of different miRNAs [41–46], 
but still, the specific processes and pathways regulated 
by individual miRNAs and their role in different diseases 
are mostly unknown. MiRNAs’ role in regulating cancer-
related processes such as apoptosis, cell growth and 
tissue differentiation has been previously described and 
their key role in cancer is well established. In addition, 
cancer is a disease of multiple simultaneous modifications 
in genes. Altered global interactions evolve into the 
transformed and malignant states [47]. Oncogenesis gains 
an instructive perspective by being considered not only 
through a rearrangement of chromosomes but also as a 
rearrangement of regulatory networks.

Here, we suggest that a single pathway can be 
regulated by a single miRNA in a manner that ultimately 
directs phenotype. Results introduce a novel computational 
concept, the ability of a single miRNA to control cellular 
outcome via targeting of multiple genes in a specific 
pathway in a manner that ultimately directs phenotype. We 
demonstrate here, through the power of gene-expression 
networks, the criticality of miRNA-Pathway control 
mechanisms in driving disease course. By uncovering the 

specific interactions within the network, that are controlled 
by miRNAs and that drive the phenotype, we catalyze 
targeted treatment, facilitate prognosis through network 
biomarkers and offer a novel perspective into hidden 
disease heterogeneity.

METHODS

Hyper-geometric function analysis

Genes were matched to their corresponding 
pathways. The probability for the pathway being targeted 
by a specific microRNA was calculated using hyper-
geometric function as follow:

Xi −  Number of targeted genes in pathway i
Kj −  Number of targets found for miRNA j
Ni −  Number of genes in pathway i
M −  Number of total genes tested

pj = F(x|M, K, N) = 1 − a
x

i=0

aK
i
b aM − K

N − i
b

aM
N
b

The result is the probability of hitting up to x of 
possible K genes in N drawings.

Table 1: The table presented here shows the results of the presented analyses in nine different 
datasets, every cancer show a specific pathway and a specific miRNA in a manner that correlates 
with different phenotype
Cancer Type Phenotype Pathway microRNA

Ovarian serous cystadenocarcinoma Survival PDGF Signaling Pathway (Biocarta) Hsa-miR-214

Liver hepatocellular carcinoma Survival IL4 Signaling Pathway (Biocarta) hsa-miR-30e

Skin Cutaneous Melanoma Breslow depth value Role of Mef2d in T-cell Apoptosis 
(Biocarta)

hsa-miR-199a-2

Kidney renal clear cell carcinoma Stage ARF1 Pathway (NCI/Nature) hsa-miR-193b

Thyroid carcinoma Survival Regulation of EIF-4e and p70s6 kinase 
(Biocarta)/

hsa-miR-375

Acute Myeloid Leukemia Morphology Hypoxia-inducible factor in the 
cardivascular system (Biocarta)

hsa-miR-181a-1

Stomach adenocarcinoma Survival Stress Induction of HSP Regulation 
(Biocarta)

hsa-miR-324

Bladder Urothelial Carcinoma Survival CBL Mediated ligand-induced 
downregulation of EGF receptors 
pathway (Biocarta)

hsa-miR-221

Head and Neck squamous cell 
carcinoma

Survival Calcium Signaling by HBX of Hepatitis 
B Virus (Biocarta)

hsa-miR-203
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For example: Gata3 signaling pathway comprises 
13 genes (N = 13), six of them potentially targeted by hsa-
miR-532 (X = 6). hsa-miR-532 was predicted to target 124 
genes within the dataset (K = 124). Given that the total 
number of genes in the dataset is 1460 the resulted p-value for 
targeting Gata3 signaling pathway by hsa-miR-532 is 3 × 10−5.

Pathway network interactions dataset

Network information was obtained from the National 
Cancer Institute’s Pathway Interaction Database [19].

Datasets

The Cancer Genome Atlas (TCGA): Breast cancer 
dataset and all datasets used for validation on different 
types of cancer were obtained from the TCGA database, 
available at http://cancergenome.nih.gov/ BRCA dataset 
holds molecular characterization of 322 BRCA patients. 
For each patient, the database provides gene expression 
microarray, microRNA values, and clinical information.

Gene Expression Omnibus (GEO): Two additional 
datasets were used in the breast cancer analysis GSE22220 
[48] and GSE19783 [49].

MicroRNA binding site prediction

miRWalk [20] is a comprehensive database 
that provides information on predicted and validated  
miRNA binding sites. It combines information produced 
by 8 established miRNA targets prediction programs: 
Diana-microT [50], miRanda [51], miRDB [52], 
PICTAR [53], PITA [54], RNA22, RNAhybrid [55], and 
Targetscan [56].

Statistical and data analysis

Tow sample Student’s T-Test was performed in 
order to estimate the pathways significance in stratifying 
phenotypes. Survival analysis was performed using 
Kaplan-Meier through clinical data to determine the power 
of a pathway in survival stratification.
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Figure 4: Predicted gene targets in the GATA3 pathway display correlation with hsa-miR-532 in the ER- group and 
not in the ER+ group. Six genes in the Gata3 signaling pathway were found to have a possible binding site with hsa-miR-532. The 
graphs presented here show the correlation between miR-532 and the six genes in the two groups tested (ER- and ER+) in the TCGA 
dataset. As can be seen here, a significant correlation was found in the ER- patients while a no correlation was observed in the ER+ group.
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Figure 5: Results from nine different cancer datasets from the TCGA. The described results were applied in nine different 
types of cancer in order to determine the strength of the presented results. For every type of cancer we identified a single pathway targeted 
by a single microRNA. In each cancer type the association between the miRNA and pathway is correlated with a specific phenotype. This 
phenomenon is consistent across a set of nine different cancer types.
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Random re-sampling

To determine the strength and accuracy of the overall 
performance of the miRNA-pathway association using 
bootstrapping, we scrambled the data and randomly build 
357 new pathways with a random size between 4–50 genes 
(as in the original data). We then performed (as described) 
a prediction of microRNA binding sites in order to choose 
the most significant microRNA that associates with 
each random pathway and calculated p-value for all 357 
microRNA-pathway pairs using hyper-geometric function. 
We iteratively repeated this analysis 1000 times. Figure 1(B) 
demonstrates the observed miRNA-pathway association 
distribution as opposed to the randomly build PPI-network.

Networks construction

Networks generation performed using MATLAB 
R2010a and networks visualization created using 
Cytoscape [57, 58]. Every node represents either a 
pathway or a micro-RNA, edges represents the association 
between a micro-RNA and a pathway.
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