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ABSTRACT

Background: Immunotherapies targeting immune checkpoint proteins CTLA-4, 
PD-1, and PD-L1 have saved lives, but these therapies have only been effective in 
some patients. Patients positive for expression of immune checkpoint proteins  in 
the tumor microenvironment show better response to immune checkpoint 
inhibitors. Consequently, knowledge of which genes are consistently expressed in 
lymphocytes within the tumor microenvironment can convey potentially effective and 
complementary new immunotherapy targets. 

Results: We identified 54 genes that have higher co-expression with the pan T-cell 
marker CD3E than CTLA4 or PDCD1. In a dataset of 26 patients who received anti-
PD-1 therapy, we observed that co-expression between CD3E and PDCD1 was higher 
among responders than non-responders, supporting our correlation-based approach. 

Conclusions: The genes highlighted in these analyses, which include CD6, TIGIT, 
CD96, and SLAMF6, warrant further investigation of their therapeutic potential.

Methods: We analyzed and ranked genes that were co-expressed with the pan 
T-cell marker CD3E in 9,601 human tumors, spanning 31 cancer types. To further 
identify targets that may be complementary to existing PD-1 therapy, we examined and 
ranked genes with high CD3E co-expression and relatively low PDCD1 co-expression. 
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INTRODUCTION

The long-term effectiveness of broad-spectrum 
chemotherapies [1] and molecularly-targeted therapies 
[2] is mitigated by the evolutionary dynamics of tumor 
cells, wherein natural selection favors increasingly 
aggressive and drug-resistant clones. Therapeutic 
resistance presents one of the universal challenges in 
cancer treatment and can be attributed to the extensive 
genetic [3] and phenotypic [4] diversity present within 
tumor cell populations. Recent achievements in the 
field of immunotherapy [5–7] to treat advanced cancers 

have renewed optimism about harnessing the power of 
the adaptive immune system, and its ability to produce 
a nearly-unlimited diversity of antigen-recognizing 
receptors, to achieve lasting therapeutic results [8–10]. 
The promise of immunomodulatory approaches lies in the 
potential to confront one dynamic, diversity-rich system 
(the evolving tumor) with another (the adaptive immune 
system) [11–14]. Nevertheless, there are challenges to 
using the immune system to fight cancer: tumors appear 
to have a diversity of immune-evasion mechanisms that 
modulate the immune response [15–18]. As we learn more 
about the biomarkers that identify which immunotherapy 
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approaches have promise for each patient [19–21], these 
challenges might be successfully addressed by developing 
a variety of approaches for immunomodulation in diverse 
patients and circumstances. 

The goal of immunotherapy is typically to reverse 
tumor immune-evasion mechanisms and restore local 
immune response against cancer cells [22–25]. Cytotoxic 
T-lymphocyte associated protein 4 (CTLA-4), which 
represses early T-cell activation, was the first immune 
checkpoint receptor to be targeted therapeutically [26, 27]. 
Most recent immunotherapy studies focus on antibodies 
to block the programmed cell death protein 1 (PD-1) or its 
ligands (e.g. PD-L1), which have enabled breakthroughs 
in the treatment of melanoma, non-small cell lung cancer, 
and renal cell carcinoma [28–31]. These treatments can 
markedly improve patient survival, but only a minority 
of patients respond to therapy [32, 33]. Analysis of PD-1 
blockade response data reveals increased response in 
patients with higher tumor PD-L1 expression, and higher 
PD-1 expression on the tumor infiltrating lymphocytes 
(TILs) [34]. These facts reaffirm the biological basis for 
immunotherapy: by reprogramming the suppressed TILs, 
it is possible to make tumors newly vulnerable to the 
immune system.

The development of an arsenal of approaches 
to modulate immune response is dependent on the 
identification and prioritization of targets that are likely 
to modulate immune activity in tumors in complementary 
ways to extant therapies [11–13]. To predict the best 
immunomodulatory treatment targets that would reverse 
the suppression of tumor-infiltrating T cells, an approach 
is needed that evaluates potential immunomodulatory 
interactions with T cells in the tumor microenvironment 
[35–37], analogous to approaches outside the realm 
of immunotherapy that identify targets based on 
functional associations of disease [38]. We reasoned that 
immunomodulatory targets would have to be relatively 
abundantly expressed in tumor-infiltrating T cells. 
Accordingly, we used mRNA expression of the pan T-cell 
marker CD3E as a metric for T-cell abundance within a 
tumor [12], and examined correlations between expression 
of CD3E and putative targets across 9,601 human tumors 
spanning 31 cancer types. We deemed genes whose 
expression is highly correlated with CD3E—and therefore 
are likely to be expressed in T cells within the tumor 
microenvironment—to be promising targets for therapy. 
We further reasoned that the most complementary targets 
would be those that are not co-expressed in common 
with PDCD1 (the gene coding for PD-1), as they might 
function in individuals for whom anti-PD-1 therapy is 
insufficient or inviable. Therefore, we also examined the 
correlation of putative targets with PDCD1 expression. 
We identified targets with high CD3E correlation and 
relatively low PDCD1 correlation, suggestive of the 
presence of T cells with low PD-1 expression. These 
immune-related genes could potentially be new targets for 

therapy complementary to PD-1 blockade therapy. Lastly, 
we extended our analysis to consider complementarity to 
therapies directed at both PD-1 and CTLA-4.

RESULTS

T-cell associated genes exhibit consistent 
expression in tumor microenvironments across 
cancer types

We generated a heat map to indicate the strength of 
correlation in expression between each gene in a 40-gene 
candidate panel and the pan T-cell marker CD3E, across 
31 cancer types. Candidate genes were selected based on 
expert knowledge for their known functional relevance 
in T-cell function and their known effects on CD8 T-cell 
function. CD3E was selected as a T-cell marker because 
of its relatively reliable and broad expression in T cells. 
Analyses using genes encoding other components of 
CD3 gave similar results (Supplementary Figure 1). 
Differentiating between CD4+ and CD8+ T-cell markers 
did result in different rankings, consistent with evidence 
that these T-cell types play divergent roles in the tumor 
microenvironment [39–42]. We chose not to use a 
combination of genes in a signature-based analysis because 
we did not want our search for new targets to be biased by 
a predefined gene signature. Four of the candidate genes 
we examined showed more highly correlated expression 
with CD3E than was exhibited by the sometimes highly 
effective immunotherapy target and checkpoint inhibitor 
PDCD1. Another successful immunotherapy target, 
CTLA4, ranks eighth on the list of candidate genes in 
terms of how strongly correlated its co-expression is with 
the CD3E T-cell marker (Figure 1A). Genes tend to show 
highly consistent CD3E co-expression patterns across the 
31 cancer types studied (Figure 1A). Additional potential 
gene targets are identified that have more highly correlated 
expression with CD3E than PDCD1 (ranked #55) and 
CTLA4 (ranked #103) when we expanded the list of studied 
genes from our 40-candidate list to all genes known to be 
expressed in cancer (Figure 1B, Supplementary Figure 
2). Promisingly, these genes tend to have known immune 
regulatory functions (Table 1). The gene for the co-
stimulatory cell-adhesion molecule CD2 ranks at the top 
of both the candidate and exome-wide lists.

Candidate gene targets to complement anti-PD1 
therapies

We re-ranked the 40-candidate gene panel and the  
exome-wide gene lists, using a “PDCD1-complementarity 
score” that simultaneously considers the strength of 
correlation between the gene target and CD3E (as above), 
and the strength of correlation in gene expression between 
the target and PDCD1. This re-ranking provided a list of 
genes that could potentially serve not only as effective 
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therapeutic targets in general, but as complementary 
therapies to anti-PD-1 therapy, in that they might be 
especially effective for patients whose tumors do not 
respond to anti-PD-1 therapy. Genes with the highest 
PDCD1-complementarity score were highly correlated in 
expression with CD3E and less correlated with PDCD1 
expression (Figure 2A, Supplementary Figure 3). When 
taking complementarity to PDCD1 into account, the C-C 
chemokine receptor type 7 gene CCR7 tops the list, and 
CD2 ranks #24. Among genes in our 40-candidate panel, 
CD40LG, CD2, and BTLA remain highly complementary 
in our joint analysis of complementarity to therapies 
directed at PDCD1 and to CTLA4 (Figure 2B–2D, 
Supplementary Figure 4).

GSEA pathway enrichment analysis of the exome-
wide gene list ranked by CD3E co-expression revealed 
significant enrichment of immune-related pathways (Table 
2; Supplementary Table 1). The top 50 pathways all have 
FDR Q value below 1 × 10−5, ranked by normalized 
enrichment scores in the range 2.06–2.38. The top-ranked 
pathway is TCR signaling in naïve CD4+ T cells (curated 
by the Pathway Interaction Database, Supplementary 

Figure 5). Other pathways of interest include the CD8 
TCR pathway, numerous immunoregulatory interactions, 
natural killer cell mediated cytotoxicity, and costimulation 
by the CD28 family; PD-1 has recently been demonstrated 
to exert its primary effect via regulation of CD28 [43–45].

Patients with response to anti-PD1 therapy have 
higher correlation between PDCD1 and CD3E 
expression than non-responders

To examine how the relationship between CD3E 
expression and PDCD1 expression influences response to 
anti-PD-1 therapy, we analyzed RNA-Seq transcriptome 
data from pretreatment samples of 26 metastatic 
melanoma patients who received anti-PD-1 therapy 
[82]. Patients had been categorized as ‘responders’ 
(n = 10 who experienced partial response, n = 4 who 
experienced complete response) and ‘non-responders’ (n 
= 12 who experienced progressive disease). Comparing 
CD3E and PDCD1 expression among responders and 
non-responders, we find higher correlation among 
responders than non-responders (Figure 3A). Among the 

Figure 1: CD3E co-expression across cancer types (TCGA abbreviations; Supplementary Table 2). Among the (A) 40 
candidate genes of the gene panel, several candidate genes show more correlated co-expression with the pan T-cell marker CD3E than 
successfully-targeted immune checkpoints like PDCD1 and CTLA4 (shown in bold). Candidate genes show remarkable consistency in their 
co-expression patterns across a variety of cancer types. Correlation coefficients in (B) a cancer exome-wide analysis reveal many genes that 
are highly-correlated with gene expression of pan T-cell marker CD3E in the tumor microenvironment. Higher correlation in expression 
than exhibited by PDCD1 and CTLA4 is observed in 54 and 102 genes, respectively. The gene CD2 tops both lists. Only two other 
candidate genes (TIGIT and CD27, shown in bold) fall in the top-50 ranking in the exome-wide analysis (#13 and #20; Supplementary 
Figure 2). The color of each tile indicates correlation with CD3E expression, (blue, low to red, high; green: not assayed). The genes are 
ranked according to the median of correlation coefficients across cancer types. Candidate genes from the gene panel are shown in bold.
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Table 1: Genes with highest CD3E co-expression in exome-wide analysis
Ranka Symbol Pearson’s r Gene descriptionb Panel?c

1 CD2 0.955 T-cell surface antigen CD2 

2 CD247 0.944 T-cell receptor T3 zeta chain
3 SIRPG 0.942 signal-regulatory protein gamma; CD172g antigen
4 CD3D 0.933 T-cell surface glycoprotein CD3 delta chain
5 LCK 0.918 lymphocyte-specific protein tyrosine kinase
6 SIT1 0.917 signaling threshold regulating transmembrane adaptor 1
7 CD6 0.912 T-cell differentiation antigen CD6
8 CXCR3 0.910 chemokine (C-X-C motif) receptor 3
9 SH2D1A 0.907 T-cell signal transduction molecule SAP

10 SLA2 0.904 Src-like-adaptor 2; modulator of antigen receptor signaling
11 SLAMF6 0.902 SLAM family member 6; activating NK receptor
12 ITGAL 0.897 antigen CD11A (p180), lymphocyte function-associated antigen 1
13 TIGIT 0.896 T cell immunoreceptor with Ig and ITIM domains 

14 CD96 0.896 T cell activation, increased late expression
15 TRAF3IP3 0.892 TRAF3-interacting JNK-activating modulator
16 ACAP1 0.882 ArfGAP with coiled-coil, ankyrin repeat and PH domains 1
17 RASAL3 0.882 RAS protein activator like 3
18 ITK 0.879 interleukin-2-inducible T cell kinase
19 TBC1D10C 0.879 carabin; TBC1 domain family, member 10C; RAS signaling inhibitor
20 CD27 0.877 T-cell activation antigen CD27 

21 CD48 0.872 CD48 antigen (B-cell membrane protein)
22 GZMK 0.870 granzyme K (granzyme 3; tryptase II)
23 SASH3 0.865 SAM and SH3 domain containing 3
24 LY9 0.865 lymphocyte antigen 9
25 SEPT1 0.865 septin 1; serologically defined breast cancer antigen NY-BR-24
26 PTPRCAP 0.862 protein tyrosine phosphatase, receptor type, C-associated protein
27 ARHGAP9 0.858 Rho GTPase activating protein 9
28 CD3G 0.857 T-cell receptor T3 gamma chain
29 TESPA1 0.856 thymocyte expressed, positive selection associated 1
30 MAP4K1 0.854 MAPK/ERK kinase kinase kinase 1
31 CORO1A 0.842 coronin, actin binding protein, 1A
32 SLAMF1 0.841 signaling lymphocytic activation molecule family member 1
33 NLRC3 0.839 NLR family, CARD domain containing 3
34 CST7 0.838 cystatin F; leukocystatin
35 IL2RG 0.838 interleukin 2 receptor, gamma
36 WAS 0.837 Wiskott-Aldrich syndrome
37 CD8A 0.834 T-cell surface glycoprotein CD8 alpha chain
38 CD5 0.829 CD5 antigen (p56-62)
39 GIMAP5 0.828 immunity-associated nucleotide 5 protein
40 IKZF1 0.828 IKAROS family zinc finger 1 (Ikaros)
41 ZAP70 0.828 zeta chain of T-cell receptor associated protein kinase 70
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‘responder’ patients, the Pearson’s correlation coefficient 
for transcript per million (TPM) expression values for 
CD3E and PDCD1 is 0.998, while ‘non-responders’ 
have a lower correlation coefficient of 0.688. A linear 
regression of these expression values for responders yields 
an R2 statistic of 0.997, compared to a value of 0.473 for 
non-responders, indicating that a linear model has over 
twice the explanatory power for responders than non-
responders. Squared residuals from the linear regressions 
are significantly lower for responders than non-responders 
(Figure 3B; P = 0.003, Mann–Whitney U test). One 
patient in the cohort, a responder, was an outlier with 
very high PDCD1 and CD3E expression values (Figure 
3A). When this patient is excluded from the analysis, the 
pattern holds. Analysis of the responder cohort excluding 
the outlier yields a CD3E-PDCD1 correlation coefficient 
of 0.931, R2 of 0.868, and squared residuals from the linear 
regression remain significantly lower than non-responders; 
P = 0.005. These findings support our hypothesis that the 
immune regulatory genes we have discovered with highly 
correlated expression with CD3E may be promising 
candidates for new targeted-therapies. 

DISCUSSION

We examined a 40-gene panel of candidate immune 
regulators and an unbiased list of 12,082 expressed genes 
in cancer to find genes consistently co-expressed with the 
T-cell marker CD3E in the tumor microenvironment. We 
found that expression patterns were remarkably consistent 

across the 31 cancer types analyzed, and that the top genes 
were highly enriched within immune-related pathways, 
indicating that tumor-infiltrating T cells may have 
universal characteristics that could be targeted effectively 
in multiple cancers. We also identified T-cell associated 
genes whose expression patterns do not correlate highly 
with PCDC1 that might be targeted for development of 
complementary therapies to anti-PD-1, or for patients 
who do not respond to anti-PD-1 therapy. When we 
examined anti-PD-1 responders and non-responders 
in metastatic melanoma, we found that responders had 
a significantly higher correlation between CD3E and 
PDCD1 than did non-responders, which supports the 
hypothesis that correlation in expression with CD3E in 
the tumor microenvironment can be a useful criterion 
for identifying new therapeutic targets with potential for 
therapeutic response. It has been shown that although PD-
L1 expression in tumor biopsies does appear to predict 
response to anti-PD-1 therapies, many tumors predicted 
as PD-L1 positive do not respond, while some responses 
occur in PD-L1-negative tumors [46–51]. Our results 
are similar in that we find that some patients with high 
CD3E-PDCD1 correlation are not responders, whereas 
others with lower correlation do respond to anti-PD1 
therapy. Also, when we performed a similar analysis on 
response to immune checkpoint therapies among patients 
with clear cell renal carcinoma, we did not find significant 
differences in CD3E-PDCD1 correlation in responders and 
non-responders [52]. More detailed expression analyses of 
responders and non-responders in additional cancer types 

42 KLRK1 0.827 killer cell lectin like receptor K1
43 CCL5 0.827 C-C motif chemokine ligand 5

44 GPR171 0.826 G protein-coupled receptor 171

45 PVRIG 0.825 transmembrane protein PVRIG; CD112 receptor

46 PTPN7 0.824 protein tyrosine phosphatase, non-receptor type 7

47 CXCR6 0.823 C-X-C motif chemokine receptor 6

48 EVI2B 0.823 ecotropic viral integration site 2B

49 CCR5 0.819 C-C motif chemokine receptor 5

50 GZMA 0.815 granzyme A; Cytotoxic T-lymphocyte-associated serine esterase-3

51 ICOS 0.815 inducible T-cell co-stimulator 

52 GRAP2 0.813 GRB2-related adaptor protein 2

53 PTPRC 0.808 CD45; protein tyrosine phosphatase, receptor type, C

54 GIMAP4 0.806 GTPase, immunity-associated protein 4

55 PDCD1 0.806 programmed cell death 1 

103 CTLA4 0.727 cytotoxic T-lymphocyte associated protein 4 
aGenes are ranked according to median CD3E co-expression across cancer types. 
bGene descriptions are taken from the NCBI Gene database. 
cPresent in the 40-gene panel if indicated by a check mark.
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will help to shed light on additional genetic and tumor 
microenvironmental factors that influence response to new 
and existing and therapies [52, 53].

As a purely correlation-based approach, our 
exome-wide expression analysis is very coarse-grained, 
and does not incorporate multi-omic pharmacogenomic 
data [54] or the specific molecular biology of the genes 
identified. Extensive molecular biological research on 

their functional and structural properties is required to 
assess their viability as immunomodulatory targets [55, 
56]. However, the guidance provided by our approach 
complements extant molecular biological investigation, 
highlighting well-studied genes that deserve continued 
attention as well as pointing out genes whose molecular 
biology is less well known, but which could be important 
for future research. While a subset of these genes will 

Figure 2: PDCD1-complementarity and joint CTLA4-PDCD1 complementarity scores of exome-wide gene list. Scatter 
plots show correlations for each target gene, with results from each cancer type superimposed and colored (blue, low to yellow, high) 
according to (A) PDCD1-complementarity score, which is high when expression of CD3E and PDCD1 are respectively correlated and 
uncorrelated with the target gene—genes with the highest PDCD1-complementarity scores are highly correlated with CD3E (approaching 
one on the x-axis) and less correlated with PDCD1 (approaching zero on the y-axis); and (B) joint CTLA4-PDCD1 complementarity score 
(including only scores above zero), which is high when expression of CD3E is correlated with the target gene and expression of PDCD1 
and CTLA4 are uncorrelated with the target gene. Genes with the highest joint complementarity scores have close to zero correlation in 
expression with both CTLA4 and PDCD1. Bar plots show the top 50 genes ranked according to (C) their median PDCD1-complementarity 
score and (D) their joint CTLA4-PDCD1 complementarity score across cancer types. Top candidate genes (red bars) and top genes from the 
cancer exome (blue bars) are shown. To the right of each bar is its ranking based on complementarity score (CS) and CD3E co-expression 
(CD3E). Ranks up to 50 are in boldface.
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lack exploitable properties or would produce undesirable 
outcomes if they were targeted, it is also likely that novel 
and complementary targets that do have high potential are 
highlighted by our analysis. Furthermore, the consistency 
of the results of our analysis across cancer types inspires 
confidence that successful targeting of the genes could 
yield a high breadth of therapeutic applicability either 
alone or in combination with other therapies. 

Among the more well-studied genes with potential 
for targeting, some have been previously identified by other 
approaches. CD6, a known T-cell co-stimulatory molecule, 
was identified in the exome-wide analysis as being co-
expressed with CD3E. The binding of CD6 to CD166 (also 
called ALCAM: activated leukocyte-cell adhesion molecule) 
enables formation of a functional immune synapse. Indeed, 
an antibody that particularly antagonizes the function 
of CD6—Itolizumab—is under investigation for use as 

Table 2: The top ten enriched pathways from GSEA
Rank Pathway name NESa

1 TCR pathway (PID) 2.383
2 CD8 TCR pathway (PID) 2.366
3 Immunoregulatory interactions between lymphoid & non-lymphoid cells (REACTOME) 2.360
4 Hematopoietic cell lineage (KEGG) 2.315
5 Class A1 rhodopsin like receptors (REACTOME) 2.302
6 Interferon gamma signaling (REACTOME) 2.302
7 Natural killer cell mediated cytotoxicity (KEGG) 2.300
8 Cell adhesion molecules cams (KEGG) 2.280
9 Cytokine cytokine receptor interaction (KEGG)− 2.259

10 Costimulation by the CD28 family (REACTOME) 2.251
aNormalized Enrichment Score. All pathways listed have a false discovery rate Q < 1 × 10−5.

Figure 3: PDCD1 and CD3E expression in responders and non-responders to anti-PD-1 therapy. Pretreatment samples 
from metastatic melanoma patients who ultimately responded to anti-PD-1 therapy show more highly correlated co-expression between 
PDCD1 and the pan T-cell marker CD3E, as indicated by (A) a linear regression of the expression values for responders with a coefficient 
of determination R2 = 0.997, compared to R2 = 0.473 for non-responders; and (B) squared residuals from the linear regression of CD3E and 
PDCD1 that are significantly lower for responders than non-responders (P = 0.003).
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an anti-inflammatory in psoriasis patients [57, 58]. This 
antibody presents a possibility of stabilizing (i.e. agonizing) 
the CD6:CD166 interaction in the immune synapse so as to 
stimulate effector T-cell function. Of course, the systemic 
consequences of such an agent might outweigh the local 
benefits of a productive anti-tumor immune response.

Other well-studied targets are encoded by TIGIT 
and CD96 [59, 60], which were similarly highly co-
expressed with CD3E, and are known to inhibit effector 
T-cell activation. TIGIT and CD96 compete against 
the stimulatory receptor CD226 for shared ligands 
(i.e. CD155) and thus suppress CD226 activation [61]. 
TIGIT can suppress effector T-cell function by directly 
suppressing CD226 in cis or suppress APC function by 
signaling through CD155 in trans [62]. TIGIT and CD96 
both suppress natural killer (NK) cell function as well 
[63, 64], and animal models of CD96 knockout mice 
revealed hyperinflammatory status with increased IFN-γ 
production in NK cells [64]. These mice are also resistant 
to a experimental lung metastasis model, suggesting a 
potential therapeutic role of CD96 blockade in cancer 
treatment [65]. TIGIT is known to additionally result in 
immunosuppression mediated by T regulatory cells (via 
secretion of IL-10 and TGF-β) [66]. Immunoregulatory 
function of TIGIT was shown to occur as a consequence of 
engagement with CD155 on dendritic cells, which results 
in increase IL-10 production, suppressing the effector 
T cells while promoting regulatory T cells [62]. Given 
the known functions of these receptors, the CD3E co-
expression data reported here provides additional rationale 
for the development of selective antagonists and context 
for potential therapeutic application.

Expression of SLAMF6 (also called Ly108)—a 
CD2 family member that plays a critical role in NK-cell 
development and activation—is also correlated with CD3E 
expression. SLAMF6 is known to be expressed on T cells, 
and its co-stimulation was shown to drive naïve CD4+ T 
cells toward a Th1 phenotype, inducing IFN-γ production 
[67]. SLAMF6 educates NK cells by forming homodimers 
at a synapse between cells. This homodimerization reduces 
NK-cell activity toward hematopoietic (i.e. SLAMF6+) 
cells while enhancing activity toward non-hematopoietic 
(SLAMF6−) tumor cells [68]. During development, 
SLAMF6 also reduces NK-cell differentiation and 
proliferation [69, 70]. Antibodies targeting SLAMF6 have 
demonstrated efficacy in mouse oncology models [71], 
underscoring the therapeutic potential of targeting this 
receptor and highlighting the potential of NK cells to play 
a critical role in anti-tumor immunity.

Additional immunotherapy-relevant patterns emerge 
when the genes that are highly ranked in our analyses 
are considered in aggregate. For instance, the high rank 
of the NK-cell mediated cytotoxicity pathway in the 
GSEA analysis, as well as pathways that include NK-
cell associated proteins (e.g. SLAMF6), could reflect the 
prevalence of MHC loss or reduction in T-cell rich tumors. 

Loss or reduction of MHC is an emerging mechanism of 
immune evasion by tumor cells [72–74]. MHC loss or 
reduction would simultaneously be expected to reduce 
presentation of tumor-associated antigens to the T cells 
and, conversely, to make the tumor cells more susceptible 
to NK-cell targeting. This implication of susceptibility 
indicates potential value in stimulating NK-cell activation 
toward tumor cells that have lost MHC expression. Our 
analysis does not partition gene expression associations 
among the various T-cell populations (e.g. conventional 
ab T cells, gd T cells or NK T cells), but future work could 
examine correlations within partitions.

Our analysis informs immunomodulatory target 
selection for tumors with infiltrating T cells but low 
PDCD1 expression. Other target-identification efforts 
could be aimed at recruiting T cells to the tumor or 
eliminating physical barriers (e.g. extracellular matrix) 
that limit the ability of effector T cells to exert cytotoxic 
effects on the tumor cell directly. It is possible that both 
approaches will be required in concert to ultimately 
drive the desired response in patients. For example, the 
remarkable success of chimeric-antigen receptor T-cell 
therapy (CAR-T therapy) in leukemias has been contrasted 
against more limited effects in solid tumors and some 
lymphomas. Targets identified in this report could also 
be relevant to the engineering of T cells to target solid 
tumors. Limited efficacy of CAR-T therapy in solid tumors 
might arise due to local signals that suppress cytotoxic 
effects upon arrival of the engineered T cells to the tumor 
microenvironment. The targets and pathways identified in 
this report might provide guidance regarding engineering 
approaches (i.e. Cas9-mediated knockouts or expression 
of decoy receptors) that could be applied where traditional 
antibody and small-molecule inhibitors are not feasible.

Immunotherapy approaches have produced some 
remarkable therapeutic successes, yet there is much 
uncharted territory left to explore. By identifying genes 
expressed in common with T-cell markers within the 
tumor microenvironments of 9,601 patients and 31 types 
of cancer, our work helps to map the boundaries of this 
landscape, narrowing the list of gene candidates for new 
therapeutic targets. Continued research will map out the 
immune composition and dynamic nature of the tumor 
microenvironment—providing opportunities to identify 
novel and complementary targets, and expanding the 
efficacy of therapeutics and the breadth of patients who 
benefit.

MATERIALS AND METHODS 

Detecting T-cell associated gene expression in the 
tumor microenvironment

RNA-Seq V2 data from 31 tumor types (including 
9601 tumor samples total) were obtained from The Cancer 
Genome Atlas (TCGA) using the open platform cBio 
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Cancer Genomics Portal [75, 76] in the form of RSEM 
z-scores. Though available from this source, we excluded 
thymoma from our analysis because tumors of the thymus 
(where T cells mature) are known to directly alter the T-cell 
composition [77]. To find candidate genes expressed by T 
cells in the tumor microenvironment, we generated lists of 
genes for each cancer type, ranked by the strength of their 
correlation with CD3E expression, a pan T-cell marker 
[78]. Pearson product-moment correlation coefficients 
were calculated using the corrcoef method of Python’s 
numpy library, applied to all tumors with expression 
values for both CD3E and a given gene of interest. A weak 
correlation between a candidate gene and the T-cell marker 
could indicate that not all T cells in the tumor express the 
gene, that there is variability in the amount of expression 
among T cells in the tumor, and/or that cells other than T 
cells in the tumor are expressing the gene. Each of these 
possibilities could have implications for the effectiveness 
of T-cell-based targeted therapy, and all support the 
conclusion that targets with weaker correlations may be 
less successful than targets with stronger correlations.

We first performed this analysis on a candidate gene 
panel of 40 known immune-associated genes, and then we 
extended the analysis to an unbiased ranking of the cancer 
exome (12082 genes found to be expressed in cancer) 
[79]. The candidate gene panel included costimulatory 
genes (CD2, CD27, CD28, TNFRSF8, CD40, CD40LG, 
CD70, ICOS, ICOSLG, TNFRSF4, TNFSF4, TNFRSF9), 
putative T-cell inhibitory genes (CTLA4, PDCD1, 
CD274, PDCD1LG2, VSIR, CD160, TNFRSF14, CD200, 
CD200R1, TIGIT, CD276, VTCN1, BTLA, LAG3, 
HAVCR2), regulatory markers (FOXP3, TNFRSF18), 
and metabolic checkpoints (ADORA1, ADORA2A, 
ADORA2B, HK2, GLS, IDO1, TPI1). We also included 
several myeloid cell-related immune checkpoints (CD14, 
CSF1R, KIR2DL1, PVR), based on their involvement 
in the complex cell-cell interaction within the tumor 
microenvironment.

Identifying candidate gene targets to 
complement anti-PD1 therapies

We developed a scoring metric to rank candidate 
genes according to their potential usefulness as alternative 
or complementary targets to PDCD1, an immune 
checkpoint gene that has already been successfully 
targeted in several cancer types. This metric, which we 
term ‘PDCD1 complementarity score’, takes into account 
each gene’s strength of correlation with CD3E expression 
(to indicate consistent expression by T cells in the tumor 
microenvironment), and also minimizes the overlap in 
expression pattern with PDCD1. The goal of this analysis 
is to identify genes that will potentially be useful as targets 
for combined immunotherapy and/or for the subset of 
patients who do not respond to anti-PD-1 therapy. The 
promise of a target gene can be quantified with a function 

of the co-expressions of two pairs of genes: the target gene 
and CD3E; and the target gene and PDCD1, by the score

� � �TC TC TP�� �,
where co-expression is captured by the absolute value of 
their Pearson correlation coefficients, denoted |ρTC| and 
|ρTP|, respectively. While negative co-expression with 
CD3E could in principle give a high complementarity 
score, no high-scoring genes (e.g. in the top 600 of our 
ranked list) exhibited negative co-expression with CD3E.

Identifying candidate gene targets to complement 
anti-PD1 and anti-CTLA-4 therapies

To identify genes that could be complementary 
to CTLA4 as well as PDCD1, we extended the 
complementarity score to include co-expression with 
CTLA4. The joint complementarity score for a candidate 
gene was quantified as

� � � � �TC TC TP TC TAmin , ,� �� �
where |ρTP| is the absolute value of the Pearson correlation 
coefficient for the target expression and CTLA4 
expression. Genes with a high joint complementarity score 
have a high co-expression with CD3E and relatively low 
co-expression with both PDCD1 and CTLA4.

Gene set enrichment analysis

To identify overrepresented pathways among genes 
with high CD3E co-expression, we used the gene- set 
enrichment software GSEA (v3.0) from the Broad Institute 
[80, 81], using the ‘GSEAPreranked’ algorithm. Our input 
rank file consisted of the exome-wide gene set and each 
gene’s corresponding median co-expression value across the 
31 cancer types. We tested against the ‘Canonical Pathways’ 
gene set (v6.1), selecting the weighted algorithm with default 
parameters. Results were compared using Normalized 
Enrichment Score (NES) and false discovery rate (FDR).

Linking anti-PD1 therapy response to strength of 
correlation between CD3E and PD-1 expression 
in the tumor microenvironment

We accessed RNA-Seq transcriptome data from 
pretreatment samples of 26 metastatic melanoma patients 
who received anti-PD1 therapy, and that had been 
categorized as ”responders” (n = 10 who experienced partial 
response, plus n = 4 who experienced complete response) 
and ”non-responders” (n = 12 who experienced progressive 
disease) according to irRECIST criteria [82]. We looked 
for differences between responders and non-responders 
in terms of the strength of correlation between CD3E 
expression and PDCD1 expression. Because patients whose 

www.oncotarget.com
www.oncotarget.com


Oncotarget4541www.oncotarget.com

tumor-infiltrating T cells consistently express PDCD1 are 
more likely to respond to anti-PD1 therapy [5, 83, 84], we 
hypothesized a stronger correlation for responders than non-
responders. Following the same logic, we also hypothesized 
that genes that are candidates for future tumor-infiltrating 
T-cell therapies will show high correlation in expression 
with CD3E in the tumor microenvironment. To assess 
differences in the CD3E-PDCD1 correlation between 
responders and non-responders, we calculated Pearson’s 
correlation coefficients as described above, and performed 
linear regressions using the ols function of Python’s 
statsmodels library. We quantified linear model fits by 
comparing their coefficients of determination (R2), and 
evaluated the statistical significance of the best fits using 
the Mann–Whitney U test.
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