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A global immune gene expression signature for human cancers
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ABSTRACT

Background: Except for a few, the immune gene signatures for most cancer 
types are not available. We sought to identify a global immune gene signature that 
is applicable to all human cancers.

Results: We identified an immune gene signature that was intimately correlated 
with tumor immune characteristics of human cancers and consisted of 382 genes 
indicative of different immune cell types. The T helper type 1 and 2 cell activation 
pathway was most significantly enriched in this global immune gene set, while 
transcription factors, such as SPI1 and STAT family members, were the top regulators 
of this gene signature. Skin cutaneous melanoma with higher expression of this 
immune gene signature had significantly longer survival than those with lower 
immune gene expression. Breast cancer patients with higher immune gene signature 
were significantly associated with advanced-stage.

Methods: We analyzed the gene expression profiles of 10,062 tumor samples 
from 32 cancer types in The Cancer Genome Atlas Pan-Cancer data set. Hierarchical 
clustering analysis of previously-defined immune genes was performed to identify 
a pan-cancer immune gene signature. Pathway and upstream regulator analyses 
were used to identify significantly enriched signaling pathways and transcription 
factors. Kaplan-Meier analysis was used to evaluate the survival difference between 
dichotomic groups with different immune gene signatures. Correlation of immune 
gene signature with tumor stage was also examined.

Conclusions: Our identified immune gene signature is applicable in human cancers 
and can be used to characterize tumor immunogenicity within and across cancer 
types. Clinical implication of this immune gene set warrants future investigation.
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INTRODUCTION

Immunotherapy is emerging as a promising 
cancer treatment and has revolutionized the mechanistic 
understanding of tumorigenesis. Inhibitors against  
CTLA-4, PD-1, and PD-L1 proteins are in clinical use 
and have been responsible for long-lasting responses in 
different types of cancer [1, 2]. However, the response 
rate varies in patients both within and across cancer types. 
Approaches to characterize immunotherapy responsivity 
are in dire need. Bioinformatics analysis of high-throughput 
gene expression profiling has enabled identification of 
clinically-relevant molecular subtypes and has enhanced 

our understanding of molecular abnormalities of cancer 
[3–6]. In particular, immune gene expression signatures 
have been identified to characterize tumor immunity and 
thus predict the response to immunotherapy [1, 7, 8]. In 
some instances, immune gene signatures have been used 
to infer the fraction of immune cells in tumor samples [9]. 
Recently, The Cancer Genome Atlas (TCGA) PanCanAtlas 
research group used immune gene sets to determine 
immune-related molecular subtypes [10]. 

Gene expression–based immune signatures or 
immune scores have been proposed to characterize the 
immune response in cancer cell lines or tumor samples 
[11]. However, many of these are derived from single-
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disease studies (referred to as local immune gene 
signatures), and their application is limited to one or a few 
cancer types [12]. Many other cancer types and especially 
rare tumors have no specifically-defined immune gene 
signatures, in some cases because of small sample sizes. 
Recently, TCGA, a collaborative project of the National 
Cancer Institute and the National Human Genome 
Research Institute, has carried out a large-scale multi-
platform genomic and integrated PanCanAtlas study of 
more than 11,000 human tissue samples from 33 major 
cancer types [13]. In the context of pan-cancer tumors, 
how to identify a pan-cancer or, in other words, a global 
immune gene signature that is applicable to a wide array 
of human cancers remains a challenge. Identification 
of a universal (general) immune gene signature to 
comprehensively understand immune characteristics 
across human cancer may provide a better understanding 
of tumor immunogenicity in a broader sense and facilitate 
the development of novel immune targets for rare tumors.

In this study, we developed a new method that 
capitalizes on gene expression profiles of a large set of 
tumor samples, with mixed cancer types, to identify a 
pan-cancer immune gene expression signature that is 
applicable across a variety of human cancers, including 
rare tumors. By performing unsupervised clustering 
analysis, we identified a group of genes that were 
intimately correlated with tumor characteristics across 32 
different cancer types and that was referred to as a global 
immune gene expression signature. We further showed 
that this gene signature consists of genes indicative of 
different immune cell types or cellular immune functions. 
We investigated signaling pathways and upstream 
regulators significantly enriched in this gene set, as well as 
the prognostic capability of this gene signature in patients 
with skin cutaneous melanoma (SKCM) and with breast 
cancer (BRCA). The enriched signaling pathway was also 
verified by cellular composition.

RESULTS

Identification of a global immune gene 
expression signature in human cancer

To identify a global immune gene signature, we have 
employed an unbiased approach in this study and carried 
out an unsupervised hierarchical clustering analysis of 
10,062 human cancer samples and 1,031 reliably measured 
immune genes (Figure 1). Similar to most of the other 
TCGA PanCanAtlas projects [13–15], the tissue-of-origin 
features provided the dominant signals for clustering of 
the tumor samples (columns in the heatmap). Slightly 
different from what we have previously done [3], in this 
study we were interested in the clustering of genes (rows 
in the heatmap), and selected the genes for clustering 
analysis by literature survey, rather than highly variable 
genes. Because genes with high expression variability 

were more likely confounded by tissue differentiation 
markers, we believe that cancer types did not have much 
impact on gene clustering (rows) as they did on clustering 
of tumor samples (columns). Moreover, because the tumor 
samples were grouped together largely by cancer types, 
we can therefore use the known tumor characteristics of 
those cancer types to determine biological functions of 
those identified gene clusters. It was apparent that the 
1,031 genes were categorized into two major clusters, 
which are referred to as, gene cluster 1 (382 genes) and 
gene cluster 2 (649 genes). Compared to gene cluster 2, 
gene cluster 1 exhibited a clear and consistent expression 
pattern that was strongly correlated with tumor purity 
or leukocyte fraction. Kidney renal clear cell carcinoma 
(KIRC) had high expression of cluster 1 genes (Figure 1). 
Consistent with this result, KIRC was previously reported 
to have low tumor purity, with a median value of only 
54% [16], and conversely, a relatively higher leukocyte 
fraction [10]. Similarly, lung adenocarcinoma (LUAD) 
also had high expression of cluster 1 genes, as indicated in 
the figure, as well as the second highest leukocyte fraction 
among the 33 PanCanAtlas cancer types [10]. Conversely, 
prostate adenocarcinoma (PRAD) and thyroid carcinoma 
(THCA) each had a relatively low expression of gene 
cluster 1. Consistent with this observation, these tumors 
also had a relatively low leukocyte fraction [10]. It has 
been previously reported that microsatellite instability 
(MSI) and POLE mutations were associated with immune 
activation [17, 18]. We next examined the relationship of 
MSI status and POLE mutation status with the identified 
immune gene signature. We obtained the POLE mutations 
from cBio portal [19] and MSI status data from the TCGA 
PanCanAtlas publications [14, 20]. It seemed that POLE 
mutated tumors were not grouped together, likely because 
POLE mutations have a low overall rate (~1.0%) in the 
entire PanCanAtlas cohort and, therefore, had a limited 
weight on clustering of tumor samples. MSI tumors were 
mainly from gastrointestinal/endometrial cancer, and the 
overall percentage was about 3.0%. Different from POLE 
mutations, MSI tumors appeared to group together, but 
exhibited opposite patterns with the reported immune 
gene signature. Some MSI tumors were associated with 
high immune signatures in contrast to other MSI tumors 
associated with a low immune signature. This observation 
is consistent with previous reports [21, 22], showing 
that MSI tumors were categorized into two groups and 
exhibited opposite immune profiles. On the other hand, 
gene cluster 2 exhibits much weaker correlation with tumor 
entities, suggesting that genes included in this cluster are 
likely disease-specific immune genes. Therefore, it is not 
trivial to apply these genes to characterize tumor immunity 
in different cancer types. As a result, we believe that gene 
cluster 1 is strongly associated with pan-cancer tumor 
microenvironment characteristics, representing a global 
immune gene expression signature for human cancer. 
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Gene composition of the immune gene expression 
signature

Next, we sought to investigate in detail the 
biological functions of genes that compose the identified 
global immune gene signature (gene cluster 1). We first 
compared the new 382-gene signature with previously 
published immune gene sets indicative of specific immune 
cell populations [12]. We found that 79 (~20.7%) genes 
overlapped the previously reported T_Cell_cluster, 
18 (~4.7%) genes overlapped the B_Cell_cluster, and 
104 (~27.2%) genes overlapped the MacTh1_cluster, 
which consists of signatures indicating Th1 cells and 
macrophages. Among the remaining genes in the 
signature, 32 (~8.4%) genes were cytokines, chemokines, 
or their receptors [23], and 46 (~12.0%) additional genes 
were from the immune gene signature obtained from the 
literature [9]. The remaining 103 (30.0%) genes were 
reported to be generally involved in Gene Oncology (GO) 
biological processes related to immune functions.

Pathway enrichment in the immune gene 
expression signature

To obtain a comprehensive overview of the 
identified immune gene expression signature, we 
used Ingenuity Pathway Analysis tools to associate 
this immune gene set with molecular pathways. The 
Ingenuity Knowledge Base, which includes all genes, 
was used as a reference set, and statistical significance 
was determined by Fisher’s exact test. As anticipated, 
the most significantly enriched signaling pathways were 
all immune related, such as the Antigen Presentation 
Pathway, T Helper Cell Differentiation, and iCOS-iCOSL 
Signaling in T Helper Cells (Figure 2). Surprisingly, the 
first ranked pathway was the Th1 and Th2 Activation 
Pathway, with a statistical significance of less than 10-

55, followed by the Th2 Pathway and the Th1 Pathway. 
The majority of the genes in the Th1 and Th2 Activation 
Pathway are located on the cellular membrane. In all, 
about 57 genes included in the immune gene expression 

Figure 1: Identification of the pan-cancer immune gene expression signature in human cancer. Unsupervised clustering 
analysis of 10,062 TCGA PanCanAtlas tumor samples and 1,031 previously reported immune-related genes revealed two groups of genes, 
namely, gene cluster 1 and gene cluster 2. The tumor types with apparently differential expression of cluster 1 genes, such as kidney renal 
clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), and thyroid carcinoma (THCA), are 
indicated. SKCM and BRCA patients were split into two subgroups and are also indicated on the plot. The covariate bars on the top showed 
tumor types indicated by the color bar, MSI, and POLE mutation status, respectively. In the heatmap, red indicates high gene expression 
and blue indicates low expression.
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signature are also involved in this signaling pathway 
(Figure 3).

Upstream regulators of the immune gene 
expression signature

Given that the immune gene expression signature 
is strongly associated with tumor immunogenicity, we 
next sought to investigate the underlying mechanism 
that leads to tumor immune activation. We first used the 
Ingenuity Pathway Analysis tool to identify potential 
nodes predicted to regulate the genes in this gene set, and 
statistical significance was assessed using Fisher’s exact 
test. The results showed that SPI1 was the most affected 
transcription factor in the upstream regulator rankings, 
based on its P value (P = 4.78 × 10−35). About 12.5% of 
the signature genes were predicted to be SPI1’s targets. 
In addition, STAT family members (such as STAT1 and 
STAT3) were also in this significantly enriched transcription 
factor list (Figure 4). The other listed regulators included 
GATA3, ZBTB16, TBX21, ETS1, PRDM1, IRF1, and 
SATB1. Prominently, among these 10 most significantly 
enriched transcription factors, five (SPI1, STAT1, STAT3, 
PRDM1, and IRF1) have been recently reported to be 
master regulators of pan-immune networks [10].

Survival analysis in SKCM patients with 
differentially expressed immune gene signatures

There are several reasons why we selected SKCM 
as an example in this study. Firstly, SKCM is one of a few 

cancer types that were previously reported to potentially 
respond to the immune checkpoint inhibitor therapy [1, 7]. 
Secondly, there was a known relationship between CTLA-
4 expression and the overall survival of SKCM patients 
[8]. Thirdly, the SKCM cases happened to be split into 
two major clusters in the heatmap that had differentially 
expressed immune gene signature (Figure 1). Therefore 
we chose SKCM as a positive control for the reported 
immune gene expression signature.

The two SKCM clusters were recapitulated 
in an enlarged version and determined on the basis 
of dendrogram branches (Figure 5A). Of note, the 
majority of uveal melanoma (UVM) patients were also 
clustered with SKCM cases, suggesting a similarity 
between these two cancer types. To alleviate the 
effect of UVM, we removed the UVM cases from the 
following analyses, naming the two SKCM-specific 
clusters SKCM_1 and SKCM_2. Specifically, SKCM_1 
denotes the SKCM patients (n = 258) in the cluster with 
apparently higher immune gene expression signature, 
whereas SKCM_2 denotes the SKCM patients  
(n = 177) in the other cluster with an apparently 
lower immune gene expression signature. Consistent 
with this observation, CTLA4 mRNA expression was 
significantly higher in the SKCM_1 patients than in 
the SKCM_2 patients (P < 6.3 × 10-16, Mann-Whitney 
test, Figure 5B). The Kaplan-Meier survival analysis 
showed that the SKCM_1 subgroup had significantly 
longer overall survival than the SKCM_2 subgroup 
(P < 0.0001, log-rank test, Figure 5C). These results 
are consistent with the anticipated clinical findings, 

Figure 2: Significantly enriched signaling pathways in the immune gene expression signature. The P values were assessed 
via Fisher’s exact test and represented in logarithmic scale.
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suggesting the reliability of the immune gene signature 
identified in this study.

Clinicopathological correlation of BRCA patients 
with differential immune gene signatures

Breast cancer (BRCA) was the most common 
cancer type in this study, representing 10.9% of the 
entire PanCanAtlas cohort (Table 1). Next we sought to 
examine the relationship between the reported immune 
gene signature and clinicopathological characteristics 
in breast cancer. As stated above, the BRCA cases were 
largely grouped together (Figure 1) and split into two 
major clusters with differential immune gene expression 
(Figure 6A). In accordance with the notation for SKCM, 
we named the cluster on the right with apparently high 
immune gene expression BRCA_1 (n = 418), and the 
cluster on the left with low immune expression BRCA_2 
(n = 312). Different from SKCM, the two BRCA-specific 
clusters did not exhibit a significant difference in overall 
survival by Kaplan-Meier analysis (P = 0.834, log-rank 
test, Figure 6B). Although these two clusters were not 
significantly correlated with either T- (P > 0.999, Fisher’s 
exact test) or M- (P = 0.277) stage, interestingly BRCA_1 

had significantly more cases with Stage III or IV disease 
(P = 0.003) or cases with N2 or N3 disease (P = 0.002) 
(Figure 6C). This phenomenon is consistent with our 
recent report that immune activation in endometrial cancer 
was significantly enriched in the cases with a high-grade 
disease [21]. 

Verification of Th cell pathway activation

We showed in the prior section that the Th1 and 
Th2 Activation Pathway was significantly enriched 
in the reported immune gene signature (Figures 3 and 
4). To verify this result, we first obtained the Cell-type 
Identification By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT) data from the TCGA Pan-
Immune Response publication [10]. CIBERSORT is a 
cellular composition interference algorithm to determine 
the relative proportions of immune cells [24]. Among the 
CIBERSORT data, there was an immune cell type called 
“T.cells.CD4.memory.activated,” which represented 
activated T helper (Th) cells. We next compared the 
estimated fractions of this cell type (“T.cells.CD4.memory.
activated”) among those cancer types, (i.e., LUAD, 
KIRC, PRAD, and THCA) as discussed earlier. LUAD 

Figure 3: Schematic of the Th1 and Th2 activation pathway. The gray nodes with purple borders represent genes that are 
included in the immune gene expression signature. The other genes shown are involved in this pathway, but not included in the signature.
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and KIRC had a relatively high immune gene signature, 
as compared to PRAD and THCA (Figure 1). Consistent 
with this observation was that LUAD and KIRC also had a 
significantly higher fraction of activated T helper cells than 
PRAD and THCA (Figure 7A). In addition, we compared 
the estimated fractions of activated Th cells between the 
two SKCM-specific clusters (Figure 5A) and between the 
two BRCA-specific clusters (Figure 6A). Consistently, 
the clusters with apparently high immune gene signatures 
(i.e., SKCM_1 and BRCA_1) had a significantly greater 
fraction of activated Th cells than those clusters with low 
immune gene signatures (i.e., SKCM_2 and BRCA_2) 
(Figure 7B and 7C). Taken together, these data indicate 
that Th cell activation is strongly correlated with the 
reported immune gene signature, verifying the significant 
enrichment of the Th cell activation pathway in this 
immune gene set.

DISCUSSION

Through hierarchical clustering analysis of 
previously defined immune genes and more than 10,000 
TCGA tumor cases across 32 different cancer types, we 
identified a global immune gene expression signature, 
which we believe is broadly applicable across human 
cancers. In-depth statistical analyses show that this global 
immune gene signature is composed of genes indicative of 
different immune cell types and, as anticipated, significantly 
enriched in immune-related signaling pathways. We further 

show that SPI1 and the STAT family are the top ranked 
modulators of this immune gene signature, representing 
key regulatory nodes of tumor immune response in human 
cancers. This identified immune gene signature can be used 
not only to characterize the immune response in cancer 
types with no available immune gene signature as of yet 
(most cancers), but to quantify the immune characteristics 
between different cancer types.

Compared to those proposed in the literature, 
the immune gene signature identified in this study has 
several advantages. First, it was generated through an 
unsupervised approach in a large patient population across 
a wide spectrum of cancer types; therefore our immune 
gene signature is unbiased and broadly applicable for 
human cancer. Most importantly, it fills the knowledge 
gap and can be used to characterize the immune response 
for the cancer types that lack available immune gene 
signatures, as of yet. Second, it is robust and scalable. The 
global nature of our immune gene signature enables us 
to evaluate or quantify the immune response for patients 
within a single cancer type or across different cancer 
types. For patients or cancer types with lower expression 
of immune gene signatures, an alternate therapy may 
be needed, although this hypothesis requires validation. 
Third, our immune gene signature helps understand 
immune response in a much broader sense and provides a 
generalized view of tumor immunogenicity that is common 
in all human cancers, although the clinical perspective of 
this gene signature deserves future investigation. 

Figure 4: The top upstream transcription factors enriched in the immune gene expression signature, as identified by 
IPA. Shown are P values (logarithmic scale) and the ratios of the number of predicted targets to the total number of genes included in the 
immune gene expression signature. The regulators are ranked in decreasing order of statistical significance.
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To our knowledge, we are reporting for the first 
time a global immune gene signature that can be used to 
characterize immunogenicity in a wide array of human 
cancers. The thus-identified gene signature is complex, in 
terms of gene content, containing biomarkers of cytotoxic 
T cells (CD8A), Treg cells (FOXP3), B cells (CD79A), 
macrophages (CD68), NK cells (KLRC1), dendritic 
cells (LILRA4), and neutrophils (EVI2B). Interestingly, 
PD-1 (gene symbol, PDCD1) and PD-L2 (gene symbol, 
PDCD1LG2), but not PD-L1 (gene symbol, CD274), are 
included in this global immune gene signature, likely 
because PD-L1 was expressed in intraepithelial immune 
cells, but not in tumor cells [17]. Another important 
immune checkpoint molecule, CTLA-4, is included in this 
signature, and overall survival was significantly longer 
in SKCM patients with higher CTLA-4 expression than 
in those with lower expression. Anti-CTLA4 antibody 

has been used in clinical practice for treating metastatic 
melanoma. 

This study provides new insights into tumor 
immune surveillance. It appears that the Th1 Pathway 
and Th2 Pathway are generalized signaling pathways to 
characterize the immune response across different cancer 
types. T helper type 1 (Th1) and T helper type 2 (Th2) 
cells are differentiated from naïve CD4+ T cells, following 
the activation of different cytokine signaling pathways. 
These two effector Th cells lineages play a significant role 
in orchestrating cell immunity [25]. Th1 cells activated 
by cytokines, such as IL-12 and IFNγ, provide immune 
response, particularly to intracellular pathogens. T-bet 
(gene symbol, TBX21) is the essential transcription factor 
for Th1 cell differentiation [26] and IFNγ production. 
Consistent with significant enrichment of the Th1 
pathway, we found that TBX21 was one of the top ranked 

Figure 5: SKCM patients with differentially expressed immune gene signatures have significant survival differences. 
(A) An enlarged portion of Figure 1, highlighting the two SKCM clusters, SKCM_1 and SKCM_2. Comparison of (B) CTLA4 mRNA 
expression and C) patient overall survival between SKCM_1 and SKCM_2. 
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transcriptional regulators of this immune gene expression 
signature. On the other hand, GATA3, also included among 
the top ranked transcription factors (Figure 6), drives the 
generation of Th2 cells [27], which are activated by IL-4, 
IL-5, and IL-13 and induce the humoral response against 
parasites. In addition to TBX21 and GATA3, the STAT 
family members are among the top ranked transcription 
factors and also involved in the regulation of Th1 and Th2 
cell differentiation.

SPI1 (transcription factor PU.1) was shown to 
be the most significantly enriched transcription factor 

that regulated the pan-cancer immune gene expression 
signature. Consistent with our findings, SPI1 was recently 
reported to be a key regulator of pan-immune networks 
through multiple different approaches [10]. Although it is 
beyond the scope of the current study, in the future we plan 
to perform a thorough interrogation on the relationship 
between this global immune gene signature and oncogenic 
pathways, copy number alterations, mutational load, and 
established clinicopathological characteristics, such as 
tumor metastasis, grade, and stage. Prognostic significance 
of the reported immune gene signature in all tumor types 

Table 1: Distribution of patient samples in the TCGA PanCanAtlas data set among the 32 cancer types that are sorted 
in descending order by their percentage in the cohort

Tumor type Description Patients Percentage 
(%)

BRCA Breast Invasive Carcinoma 1097 10.9
KIRC Kidney renal clear cell carcinoma 533 5.3
UCEC Uterine corpus endometrial carcinoma 532 5.3
HNSC Head and neck squamous cell carcinoma 521 5.2
LUAD Lung adenocarcinoma 516 5.1
LGG Brain lower grade glioma 515 5.1
THCA Thyroid carcinoma 505 5.0
LUSC Lung squamous cell carcinoma 501 5.0
PRAD Prostate adenocarcinoma 497 4.9
SKCM Skin cutaneous melanoma 470 4.7
COAD Colon adenocarcinoma 450 4.5
STAD Stomach adenocarcinoma 418 4.2
BLCA Bladder urothelial carcinoma 408 4.1
LIHC Liver hepatocellular carcinoma 371 3.7
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 305 3.0
OV Ovarian serous cystadenocarcinoma 305 3.0
KIRP Kidney renal papillary cell carcinoma 290 2.9
SARC Sarcoma 259 2.6
ESCA Esophageal carcinoma 184 1.8
PCPG Pheochromocytoma and paraganglioma 179 1.8
PAAD Pancreatic adenocarcinoma 178 1.8
READ Rectum adenocarcinoma 161 1.6
GBM Glioblastoma multiforme 160 1.6
TGCT Testicular germ cell tumors 134 1.3
THYM Thymoma 120 1.2
MESO Mesothelioma 87 0.9
UVM Uveal melanoma 80 0.8
ACC Adrenocortical carcinoma 79 0.8
KICH Kidney chromophobe 66 0.7
UCS Uterine carcinosarcoma 57 0.6
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 48 0.5
CHOL Cholangiocarcinoma 36 0.4
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other than SKCM deserves systematic investigation to 
account for multi-hypothesis testing corrections. 

In summary, our identified immune gene expression 
signature is applicable in a wide spectrum of human 
cancers and can quantify tumor immunity within or across 
cancer types. The clinical implication of this gene set and 
correlation with mutational load and oncogenic pathways 
warrants future investigation.

MATERIALS AND METHODS

Patient samples

The patient clinical annotation [28] and gene 
expression data [13] used in this study were obtained 

from the TCGA PanCanAtlas Research Network. This 
gene expression data set has merged gene expression data 
generated with different platforms and data generation 
centers. The clinical annotation contains patient 
information, such as tumor histology, tumor grade, disease 
stage, and overall survival duration. Overlapping of these 
two data types resulted in a total of 10,062 samples that 
had both gene expression and clinical data. The tumor 
tissues were obtained from 32 different cancer types 
(Table 1). The most common type was breast cancer, with 
more than 1,000 samples; the least common was uterine 
carcinosarcoma, with only 57 samples. Acute myeloid 
leukemia (the thirty-third PanCanAtlas cancer type) was 
not included in this analysis, because of missing clinical 
information.

Figure 6: Clinicopathological correlation of BRCA patients with differentially expressed immune gene signatures. (A) 
An enlarged portion of Figure 1, highlighting the two BRCA clusters, BRCA_1 and BRCA_2. Comparison of (B) patient overall survival 
and (C) both AJCC staging and TNM staging between BRCA_1 and BRCA_2.
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Immune-related gene sets

For first-order screening of informative genes used 
for clustering analysis, we started with a list of genes 
representative of biological characteristics that have 
been previously reported to be associated with immune 
response or immune suppression. We assembled this list 
by undertaking an extensive literature search and by using 
diverse resources, which were considered to be reliable 
and comprehensive [9, 12, 23, 29–31]. We first obtained 
the immune gene sets indicative of specific cellular 

immune populations from two different sources [12, 31]. 
We then obtained a list of genes associated with immune 
suppression, and a collection of genes for chemokines, 
cytokines, and their receptors [23]. We also included 
a 200-gene set that was highly specific to tumor T-cell 
infiltration [29] and an additional immune gene set [9]. To 
obtain an encompassing list of immune genes, we included 
the immune function genes identified from different 
treatment arms in clinical trials [30] and a list of immune 
metagene attractors derived from computational analysis 
[10, 32]. Of note, we did not include the Broad Institute 

Figure 7: Verification of Th cells activation. Correlation of estimated fractions of activated Th cells (A) among LUAD, KIRC, 
PRAD, and THCA, as discussed in Figure 1; (B) between the two SKCM clusters (SKCM_1 and SKCM_2), as depicted in Figure 5A; and 
(C) between the two BRCA clusters (BRCA_1 and BRCA_2), as depicted in Figure 6A. Data are presented as mean with 95% confidence 
intervals. The P values were calculated using a two-sided Man Whitney test.
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molecular signatures data base (MSigDB), because the 
immune signatures in this database essentially cover the 
entire genome. In all, the combined gene list contained 
about 1,800 genes. 

Gene expression clustering analysis

Our clustering analysis was performed similar to 
what we did previously [14]. The immune gene expression 
profiling of the total 10,062 human cancer samples was 
further filtered to eliminate unreliably measured genes 
and to limit the clustering to relevant genes [33]. First, we 
filtered out genes that were duplicated in multiple sources 
or that were not present in the TCGA data set. We then 
removed genes that had missing expression values in 
any of the samples. Next, we filtered out genes that had 
small expression values (less than 0.5 reads per kilobase 
million (RPKM)) in at least one-third of the samples. 
Implementation of these filters resulted in 1,031 unique 
genes with reliably measured expression and more or 
less with immune relevance. The gene expression data 
were then median centered and log transformed. Next, 
we applied the hierarchical unsupervised clustering 
analysis with the preprocessed gene expression data. The 
distance metric was one minus the Pearson’s correlation 
coefficient, and the Ward method was used as a linkage 
algorithm. This unsupervised approach clustered genes 
and identified two robust gene clusters. The two gene 
clusters and their gene expression patterns were viewed by 
using the next-generation clustered heat map (NG-CHM) 
tool developed at The University of Texas MD Anderson 
Cancer Center [15]. To further verify the identified immune 
gene signature, we also incorporated the MSI status and 
POLE mutations covariate bars in the heatmap. We 
obtained the POLE mutations from cBio portal [19] and 
MSI status data from the TCGA PanCanAtlas publications 
[14, 20]. POLE was commonly mutated in endometrial and 
colorectal cancer, while MSI tumors frequently occurred in 
endometrial, stomach, and colon cancer.

Pathway analysis and upstream regulator 
analysis

Pathway analysis (Ingenuity Pathway Analysis (IPA)) 
was applied to identify the enrichment of signaling pathways 
in the immune gene expression signature. Upstream 
regulator analysis was used to identify transcription 
regulators predicted to regulate genes in this gene set.

Analysis of patients with skin cutaneous 
melanoma

Unsupervised analysis classified the SKCM patients 
into two major subgroups. The first subgroup (referred 
to as SKCM_1), with apparent higher expression of 
immune gene signature, consisted of 258 SKCM patients; 

the second subgroup (referred to as SKCM_2), with 
apparent lower expression of immune gene signature, 
consisted of 177 SKCM patients. We then compared the 
gene expression difference in the CTLA-4 gene between 
these two subgroups. After removing cases with missing 
survival data, we obtained 250 SKCM patients in the 
SKCM_1 group and 175 SKCM patients in the SKCM_2 
group. The difference in overall survival between these 
two subgroups was then examined. 

Analysis of patients with breast cancer

The BRCA cases were categorized into major 
clusters. Consistent with the SKCM notation, BRCA_1 
denotes the cluster with a high immune gene signature, and 
BRCA_2 denotes the cluster with low immune expression. 
After filtering out the cases from other entities, BRCA_1 
was comprised of 418 BRCA patients and BRCA_2 
consisted of 312 cases. In a similar manner, we performed 
a Kaplan-Meier survival analysis on these two BRCA-
specific clusters. Correlation of these two clusters with 
tumor stage, as well as TNM staging, is also investigated. 

Statistical analysis

The statistical significance for both pathway analysis 
and upstream regulator analysis was assessed via Fisher’s 
exact test. The correlation of BRCA-specific clusters 
with clinicopathological characteristics was examined 
via Fisher’s exact test. We used the nonparametric 
Mann-Whitney test for comparison of CTLA-4 mRNA 
expression, as well as for comparison of estimated 
fractions of activated Th cells between the dichotomic 
groups. The Kaplan-Meier method was used to evaluate 
survival difference between these SKCM clusters, and 
statistical significance was assessed via log-rank test. All 
statistical tests were two-sided, and a P value of less than 
0.05 was considered significant. The calculations and 
graphs were made with GraphPad Prism, version 7.03 
(GraphPad Software, Inc., La Jolla, CA).
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