
Oncotarget11004www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 5, No. 22

Bioinformatics analysis of the serine and glycine pathway in 
cancer cells

Alexey Antonov1,*, Massimiliano Agostini1,2,*, Maria Morello2, Marilena Minieri2, 
Gerry Melino1,2,3, Ivano Amelio1

1Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
2Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome 00133, Italy
3Biochemistry Laboratory IDI-IRCC, University of Rome “Tor Vergata”, Rome 00133, Italy
*These authors contributed equally to this work

Correspondence to: 
Massimiliano Agostini, e-mail: ma285@le.ac.uk
Alexey Antonov, e-mail: aa668@le.ac.uk
Keywords: Cancer Metabolism, Serine, Glycine, survival analysis
Received: October 27, 2014 Accepted: October 28, 2014 Published: November 21, 2014

ABSTRACT
Serine and glycine are amino acids that provide the essential precursors for the 

synthesis of proteins, nucleic acids and lipids. Employing 3 subsequent enzymes, 
phosphoglycerate dehydrogenase (PHGDH), phosphoserine phosphatase (PSPH), 
phosphoserine aminotransferase 1 (PSAT1), 3-phosphoglycerate from glycolysis can 
be converted in serine, which in turn can by converted in glycine by serine methyl 
transferase (SHMT). Besides proving precursors for macromolecules, serine/glycine 
biosynthesis is also required for the maintenance of cellular redox state. Therefore, 
this metabolic pathway has a pivotal role in proliferating cells, including cancer cells. 
In the last few years an emerging literature provides genetic and functional evidences 
that hyperactivation of serine/glycine biosynthetic pathway drives tumorigenesis. 
Here, we extend these observations performing a bioinformatics analysis using 
public cancer datasets. Our analysis highlighted the relevance of PHGDH and SHMT2 
expression as prognostic factor for breast cancer, revealing a substantial ability 
of these enzymes to predict patient survival outcome. However analyzing patient 
datasets of lung cancer our analysis reveled that some other enzymes of the pathways, 
rather than PHGDH, might be associated to prognosis. Although these observations 
require further investigations they might suggest a selective requirement of some 
enzymes in specific cancer types, recommending more cautions in the development 
of novel translational opportunities and biomarker identification of human cancers.

INTRODUCTION

Cancer cells exhibit metabolic changes, which 
enable the malignant cells to sustain cell growth and 
proliferation [1–3]. Indeed, Otto Warburg was the first 
to describe that cancer cells preferentially use aerobic 
glycolysis to produce energy [4–7]. However, in the 
last 10 years significant effort has been made to the 
characterization of the metabolic alteration in cancer 
cells [8, 9]. It is now clear that together with the Warburg 
effect, the malignant cells show also an increased 
flux through to the pentose phosphate pathway, high 
glutamine consumption, maintenance of redox status and 

increased lipids biosynthesis, which all tighter help is 
sustaining cell proliferation under metabolic, redox stress 
or hypoxia [10–12]. Moreover, an increased uptake of 
glycine and serine has been observed [13–15]. However, 
serine can be also synthetized within the cells. Indeed, 
the de novo serine synthesis pathways represent one of 
the most significant pathways derived from a branching 
route of glycolysis. Serine can then converted in glycine, 
which provides the carbon units to fuel the one-carbon 
metabolism [16, 17]. One-carbon metabolism represents a 
complex metabolite network that is based on the chemical 
reactions of folate compounds [18]. This pathway provides 
the one carbon unit required for the synthesis of proteins, 
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lipids, nucleic acids and other cofactors. The one-carbon 
unit proceeds in a cyclical pathway from where they are 
transferred to other metabolic pathways. The importance 
of this metabolic pathway is underlined by the fact that 
antimetabolic (anti-folate) chemotherapy is currently 
widely employed in cancer treatment since its discovery 
more than 50 years ago [19–21]. It was in fact in 1947 
when Sidney Farber at the Children’s Hospital defined 
the use of antifolate therapy for leukemia, based on the 
work of the hematologists George Minot, who identified a 
critical micronutrient later defined as vitamin B12 (1934 
Nobel Prize), and Lucy Willis, a clever physician from the 
London School of Medicine for Women who identified in 
Bombay a “Willis factor” from the popular yeastly spread 
“Marmite” which turned out to be folic acid.

In this perspective we will highlight the recent 
implication of serine and glycine metabolism in cancer 
biology. Recent reports indicate that the serine biosynthetic 
pathway is activated in cancer cells and represents 
an essential process in cancer pathogenesis [22]. Our 
bioinformatics analysis indicate that selective expression 
of some metabolic enzymes represents a prognostic factor 
for cancer, suggesting that activation of this metabolic 
pathway can be associated to the pathogenesis of different 
cancer types.

Serine pathway in cancer cells

Glucose and glutamine are two nutrients that cancer 
cells utilize for supporting energy metabolism and anabolic 
processes [23, 24]. However, cancer cells also increase de 
novo synthesis of serine and glycine that provides methyl 
group required for the biosynthetic pathways and DNA 
methylation. Indeed, the biosynthesis of serine and glycine 
was first found increased in lymphomas. In particular, it 
was shown, by radiolabeling experiments, that serine is 
formed prior glycine and that the glycolytic intermediate 
metabolite, 3-phosphoglycerate, is a common precursor 
[25]. In the last few years this early observation was also 
observed in breast cancer [26, 27] and melanoma [18]. 
Within the cells serine is synthetized by 3-phosphoglycerate 
through a 3-step enzymatic reaction. The first step of this 
metabolic pathway is the conversion of 3-phosphoglycerate 
in 3-phosphohydroxypyruvate, reaction catalyzed by 
phosphoglycerate dehydrogenase (PHGDH). Successively, 
3-phosphohydroxypyruvate is converted in phosphoserine 
by the enzyme phosphoserine phosphatase (PSPH) 
and then in serine by phosphoserine aminotransferase 
1 (PSAT1) (Figure 1) Serine can be also imported from the 
extracellular compartment by amino acid transporter.

The expression of PHGDH has been found 
upregulated (amplification of chromosome 1p12) in triple 
negative breast cancer and in melanoma, suggesting that 
tumors containing amplification of PHGDH take advantage 
from serine biosynthesis activity. Indeed, in vitro 
experiments show that inhibition of PHGDH expression 

induces a strong decrease in cell proliferation and a 
reduction in serine biosynthesis. Moreover, when PHDGH 
were overexpressed in the breast epithelial cells MCF10A 
(with no upregulated serine biosynthesis), the acinar 
morphology was disrupt and induces further phenotypic 
alterations that predispose to malignant transformation.

Oncogenic/oncosuppressor signalling can respond 
to nutrient stress and thus determine metabolic response 
in cancer cells. The tumour suppressor p53, beside the 
canonical response to DNA damage [28, 29] and control 
of cell cycle arrest [30–35] and apoptosis [36–48], plays 
a pivotal role in cellular metabolic homeostasis [49–51]. 
p53 helps cancer cells to face serine starvation, preserving 
cellular anti-oxidant capacity. Cells lacking p53 failed 
to respond to serine starvation, due to oxidative stress 
condition, which leads to reduced viability and severely 
impaired proliferation. During serine starvation, activation 
of p53-p21 axis leads to cell cycle arrest, which promotes 
cell survival by efficiently channeling depleted serine 
stores to glutathione synthesis [52–55]. The others p53-
family members, with all the different expressed isoforms 
[56–58], determine a complex network which affect 
cellular metabolism [59]. TAp73 can control the balance 
of cellular metabolism [60–65], thus exerting its role in 
development and tumour suppression. TAp73 promotes 
serine/glycine biosynthetic pathway [66]. Similarly 
to p63 [67], p73 [68] promotes the expression of the 
glutaminase-2 (GLS-2), favoring glutaminolysis, which in 
turn pushes the second step of serine biosynthesis (Fig. 1). 
Overall, p53-family can influence various metabolic 
pathways, glycolysis, glutaminolosys, mitochondrial 
metabolism, fatty acids beta-oxidation etc., enabling cells 
to respond to metabolic stress [49, 63, 69–72]. However, 
p53 is mutated in about half of human cancers, resulting 
not only in a wt p53 loss-of-function but also a mutant 
p53 (mp53) gain-of-function (GOF) [73–77]. Part of 
mp53 GOF is due to mp53 interaction and consequent 
repression of the siblings, p63/p73 [78–81], making this 
scenario much more complex. Alteration of oncogenic/
oncosupressor signaling might determine the expression 
of specific metabolic enzyme patterns, leading the cancer 
cells to rely on specific metabolic pathways.

In order to evaluate the importance of serine 
metabolic enzymes expression for cancer cells, we 
asked to search whether the enzymes of the serine 
metabolic pathway could function as prognostic marker 
[82, 83]. We assessed the clinical value of PHGDH in 
17 breast and in 7 lung cancers human datasets. In 7 out 
of 17 breast cancer datasets high PHGDH expression 
represented a negative prognostic factor, predicting 
negative patient survival (Table 1, Fig. 2a,b). However, 
PHGDH did not appear to have any prognostic value in 
lung cancer datasets, whereas is some datasets PSAT-1, 
PSPH or SHMT-2 were able to predict patient survival 
(Table 1). This observation leads to the conclusion 
that although PHDGH seems to be involved in breast 
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cancer pathogenesis, the alteration of serine biosynthesis 
might be still involved in other cancer types, employing 
different mechanisms.

Glycine pathway in cancer cells

De novo synthesis of serine plays a crucial role as 
supplier of precursors for several biosynthetic pathways. 
Indeed, serine can be converted to glycine by the enzyme 
serine hydroxymethyltransferase (SHMT) [84, 85]. This 
reaction represents a major source of methyl groups for 
the one-carbon pools that are required for the biosynthesis 
of GSH, proteins, purines and DNA/histones methylation 
[86]. Therefore, SHMT occupies a critical position at the 
convergence of two key pathways for chemotherapeutic 
intervention: serine/glycine metabolism and nucleotide 
biosynthesis [87]. Within the cell, two isoforms of SHMT 

are present. SHMT1 is localized in the cytoplasm, whereas 
SHMT2 is present in the mithondria. Interestingly, c-Myc 
directly regulates the expression of both shmt1 and shmt2 
genes [88–90]. More importantly, the expression and/
or activity of the two enzymes are impaired in several 
tumors [91]. Several experimental evidences indicate that 
glycine uptake and catabolism can promote tumorigenesis, 
indicating that glycine metabolism could be a potential 
target for therapeutic intervention. Indeed, recently 
has been demonstrated that both glycine consumption 
and in particular, the expression of the mitochondrial 
glycine biosynthetic pathway correlate with the rate of 
proliferation across cancer cells [92–98]. This suggests, 
that under some circumstances, mitochondria play an 
essential role in supporting rapid cancer cell proliferation. 
In fact, inhibiting the expression of mitochondrial 
SHMT2 gene and deprivation of extracellular glycine 

Figure 1: A schematic overview of the metabolic pathways involved in cancer biology. Cancer cells show an increased 
flux through to the glycolysis, pentose phosphate pathway and high glutamine consumption. Moreover, they also show an increased 
uptake of glycine and serine. In particular, the serine synthesis pathway utilizes the glycolytic intermediate glycerate-3-phosphate, which is 
converted by PHGDH, PSAT-1 and PSPH into serine. De novo synthetized serine and glycine fuel on-carbon metabolism. The one-carbon 
metabolism plays an essential role in the generation of proteins, nucleotides, GSH and substrates for methylation reactions. In red are the 
cancer-associated genes. PHGDH, phosphoglycerate dehydrogenase; PSAT-1, phosphoserine aminotransferase 1; PSPH, phosphoserine 
phosphatase; SHMT, Serine hydroxymethyltransferase; GLS-2, glutaminase 2; GLDC, glycine decarboxylase; GSH, glutathione; MTHFR, 
methylenetetrahydrofolate reductase; SAM, S-adenosylmethionine; SAH, S-adenosylhomomocysteine; THF, tetrahydrofolate; me-THF, 
5,10-methylenetetrahydrofolate; F-THF, 10-formyltetrahydrofolate; mTHF, 5-methyltetrahydrofolate; PKM, pyruvate kinase; PPP, pentose 
phosphate pathway.
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were able to reduce HeLa cells proliferation, resulting in 
a prolonged G1 phase of the cell cycle. On the contrary, 
the upregulation of the serine/glycine metabolism was 
correlating with cell proliferation and poor prognosis in 
several tumors.

In our survival estimation analysis SHMT-2 resulted 
the most frequent significant prognostic factor among the 
serine/glycine biosynthetic enzymes. In 9 out of 17 breast 
cancer datasets high expression of SHMT-2 predicted 
negative prognosis (Table 1, Fig. 2c-h). On the other hand 
prediction ability of SHMT-1 appeared less clear. High 
expression of SHMT-1 indeed predicted in 3 datasets 
good prognosis and in 3 datasets negative prognosis, 
leaving very complex any conclusion (Table 1). From our 
analysis SHMT-2, even more than PHGDH, appears to be 
highly clinical relevant for breast cancer. Identification of 
selective SHMT-1/SHMT-2 selective inhibitors could be 
key for innovative and successful approaches.

CONCLUSIONS AND PERSPECTIVES

Although the antimetabolites drugs were introduced 
in cancer therapy more than 50 years ago, they are still the 

most widely used drugs in cancer chemotherapy. Indeed, 
the antifolate agents were successfully used in the treatment 
of children affected by acute lymphoblastic leukemia. In 
the last decade many scientists have been attracted (or  
re-attracted) by the metabolic process associated with 
cancer biology. This boosted part of the scientific 
community to re-focus their effort in the development 
of novel antimetabolites drugs and/or in seeking new 
potential therapeutic targets (druggable metabolic 
enzymes) [99–105]. In fact, approved inhibitors of 
thymidylate and purine biosynthesis include methotrexate, 
pralatrexate, 5-fluorouracil and pemetrexed are currently 
in clinic. Among these, 5-fluorouracil is a standard agent 
for several cancer types, including colorectal cancer. The 
emerging role of serine/glycine/one-carbon metabolism 
in cancer biology opens the opportunity of alternative 
chemotherapeutic approaches. Indeed, mimicking uracil, 
5-FU inhibits thymidine synthase, resulting in impairment 
of methylation of dUMP to dTMP and folate cycle 
disruption [106]. Several of these compounds are currently 
under pre-clinical evaluation or early-stage clinical trial. In 
addition, preclinical studies are currently ongoing also for 
small molecules targeting the catalytic site of metabolic 
enzymes, such as PHGDH PSAT, PSPH, GLDC [22]. 

Table 1: Survival outcome in human cancer datasets predicted by serine and glycine enzyme 
expression
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Since the activity of metabolic enzymes can be modulated 
by the binding of an effector molecule at the allosteric site, 
it should be also considered to explore the possibility of 
generate small molecules that target allosteric binding site 
of the metabolic enzymes. However, our survival analysis 
(Table 1 and Fig. 2) highlighted that expression of some 
enzymes instead than others might be associated to the 
pathogenesis of different cancer types. This observation 
suggests more cautions. A selective drug targeting design 
for different cancer types could be critical to achieve 
therapeutic success. Therefore, it will be of importance to 
select subsets patients and to find the right combinations of 
chemical compounds targeting several metabolic enzymes 
of the serine/glycine pathway.

Pre-clinical and clinical studies have shown that 
reducing glucose intake was associated with negative 
effect on tumor growth [107–111]. Moreover, it has 
been show that in a tumor in xenograft mouse model, 
the tumor growth of p53-/- cells was reduced in mice 
fed with a diet containing no serine and glycine [52]. 
Overall, these observation indicate that an alternative 
therapeutic approach could be to associate with 
pharmacological agents including, a complementary diet 
or nutrient modification. However, it should be noticed 
that reduced intake of folate is also associated with 
breast and colorectal cancer, suggesting the complexity 
of the relationship between diet and one-carbon  
metabolism.

In conclusion, more work is needed in order to 
define the complexity of the metabolic pathways involved 
in cancer biology and the relationship between them. 
Moreover, we also need to understand not only the 
differences between normal and tumor cells, but also 
why some cancer cells are more dependent on specific 
metabolic pathways than others. This it could potentially 
improve the selectivity and the outcome of the therapy.
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