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ABSTRACT
Introduction: Lung cancer continues to be a significant health burden in the 

United States. Lung cancer in never smokers is considered as a different disease 
and underlying mechanism of spontaneous lung cancer susceptibility is still poorly 
known. Meanwhile, the roles of long non-coding RNAs (lncRNAs), which have multiple 
functions in biological processes, have seldom been studied in spontaneous lung 
cancer susceptibility.

Methods: In this study, microarray analyses of normal lung tissues were 
performed in 23 different mouse strains. LncRNA profile was analyzed by re-annotating 
exon array for lncRNAs detection. LncRNA/mRNA co-expression networks were 
constructed and the association between significant lncRNA module and significant 
mRNA modules was calculated. Finally, Genome-wide association (GWA) results were 
used to further highlight the key mRNAs and lncRNAs associated with spontaneous 
lung cancer susceptibility.

Results: Four mRNA modules were significantly associated with spontaneous lung 
cancer susceptibility. Genes in these modules were enriched in “blood coagulation” and 
“immune system process”. Only one lncRNA module was significantly associated with 
spontaneous lung cancer susceptibility. Many lncRNAs in this module were co-expressed 
with mRNAs in the second most significant mRNA module. This co-expression network 
contained 113 interactions between 30 lncRNAs and 40 mRNAs. After GWA filtration, 
two mRNAs (Myo7a and Zfp874a) and two lncRNAs (n290048 and n271850) were 
highlighted as the candidates responsible for genetic susceptibility to lung cancer.

Conclusions: We firstly used integrative system genetic analysis to report the 
mRNA-lncRNA network associated with spontaneous lung cancer susceptibility and 
identified potential targets for lung cancer prevention.

INTRODUCTION

Lung cancer continues to be a significant health 
burden in the United States. Over 220,000 new cases 
are expected in 2017, accounting for about 25% of all 
cancer diagnoses [1]. The major cause for lung cancers is 
smoking [2]. However, there are still 15% of lung cancers 
in men and 53% in women not attributable to smoking [3]. 
In the last decade, some research groups, including our lab, 
used inbred mouse model to investigate the mechanism 
of lung cancers occurring without apparent environmental 
stimulus (i.e., spontaneous) [4–6]. In these studies, using 
genome-wide association (GWA) analyses and expression 

quantitative trait loci (eQTLs) analyses, several key 
genes or loci were identified to be related to spontaneous 
lung cancer susceptibility. But since the complexity 
of spontaneous lung cancer pathogenesis, integrated 
system genetic approaches are needed to investigate the 
transcriptome data and further increase the probability of 
identifying key genes and complex cellular networks.

Long non-coding RNAs (lncRNAs) are defined 
as RNA transcripts longer than 200 nucleotides without 
protein-coding function [7]. Accumulating evidence suggests 
that lncRNAs are involved in various types of molecular 
mechanisms and many diseases [8]. For examples, lncRNA, 
HOTAIR (Hox transcript antisense intergenic RNA), was 
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found to be up-regulated in human lung cancer tissues and 
promote migration and invasion of human lung cancer 
cell lines [9]. HOTAIR could also promote lung cancer 
cell metastasis in mice model [9]. The lncRNA MALAT1 
(metastasis-associated lung adenocarcinoma transcript 1), 
was also found to regulate lung cancer metastatic cascade 
both in human cell lines and in mice model [10]. However, 
no transcriptome-wide lncRNAs study has been conducted 
for spontaneous lung cancer susceptibility.

Although some exon microarrays were not designed 
for lncRNA detection, they contain many probes to expressed 
sequence tags (ESTs) and prediction-based transcripts. 
Several studies [11–14] showed that a large portion of these 
probes can be re-annotated for lncRNAs. For example, Zhou 
et al. constructed a cancer-related lncRNA database via 
repurposing microarray probes. Two of the newly identified 
lncRNAs were confirmed to be associated with prostate 
cancer cell growth by experiments [15].

In current study, we established a transcriptome-wide 
lncRNA expression profile by re-annotating Affymetrix 
Mouse Exon array data from normal lung samples collected 
from 23 mouse strains. We then constructed mRNA/
lncRNA co-expression networks using Weighted Gene Co-
expression Network Analysis (WGCNA) and found hub 
genes based on the gene-module connectivity. Correlations 
between hub mRNAs and lncRNAs in significant modules 
were calculated to yield information on transcriptional co-
expression in mouse normal lung tissues. In addition, we 
used GWA analysis results as a filter to pinpoint the most 
interesting potential regulatory sub-network.

RESULTS

Study design and workflow

In this study, we used RNA expression data of normal 
lung tissues in different mouse strains to detect key genes for 
spontaneous lung cancer susceptibility. We annotated RNA 
expression data to both mRNA and lncRNA profiles. From 
the co-expression analysis, we aimed to generate potential 
mRNA-lncRNA network associated with spontaneous lung 
cancer susceptibility. In Figure 1, we showed our system 
genetics framework for underlying spontaneous lung cancer 
pathogenesis. Combining our exon array data and published 
spontaneous incidence of pulmonary adenomas, system 
genetics analysis was performed using transcriptome data 
of lung tissue from 23 mouse strains (total n = 138). The 
detailed strain and spontaneous lung cancer susceptibility 
information was shown in Table 1.

Construction of mRNA co-expression network 
and identification of spontaneous lung cancer 
susceptibility associated modules

To investigate the gene-gene interactions 
important for spontaneous lung cancer susceptibility, 

after microarray data processing, we selected top 7,500 
most variable genes based on variance across the 138 
samples and identified 28 modules by WGCNA (Figure 
2A). We then examined the biological significance of the 
identified modules. To test the association of each module 
with spontaneous lung cancer susceptibility, we applied 
module eigengenes (MEs) to summarize the behaviors 
of modules and identified significant association of four 
modules (white, lightgreen, midnightblue and grey60) 
with spontaneous lung cancer susceptibility (p value < 
0.01) (Figure 2B). By Pearson correlation, the ME of each 
module was negatively correlated with the trait. It meant 
that all these four modules were negatively correlation 
with the trait. The white module (module size = 33 genes) 
showed the most significant results (r = –0.35 and p value 
< 0.001). The top 10 hub genes, module membership 
(MM) > 0.8, in each module were shown in Table 2.

Table 3 and Figure 3 summarized the results of 
enrichment analysis of genes in top four significant 
modules. Prediction terms with false discovery rate (FDR) 
less than 0.05 were selected and ranked by FDR values. 
The most significant gene ontology (GO) term of white 
module was related to blood coagulation (Figure 3A. FDR 
< 0.001). In lightgreen module, there was no significant 
enrichment term. Genes in the midnightblue (Figure 3B) 
and grey60 modules (Figure 3C) were both enriched in 
GO.0002376~ immune system process. However, the 
terms directly related to cancer development, such as 
cell proliferation, cell cycle and differentiation, were not 
identified as significant ones. The network of each module 
was shown in Figure 4.

Construction of lncRNA co-expression network 
and identification of spontaneous lung cancer 
susceptibility associated modules

To construct the lncRNA co-expression network, we 
first re-annotated the probes on the exon array and found 
a total of 24670 lncRNAs. We then selected 7500 most 
variable lncRNAs for WGCNA and identified 7 lncRNA 
modules (Figure 5A). At p value less than 0.01, only red 
module was significantly associated with spontaneous 
lung cancer susceptibility (Figure 5B).

mRNA-lncRNA co-expression network

Since one of the major functions of lncRNAs is 
regulation of gene transcription, we also aimed to study the 
interactions between mRNAs and lncRNAs. We performed 
Pearson correlation calculation between lncRNAs in 
red module and all mRNA involved in WGCNA. Based 
on the correlation analysis results, we constructed a 
mRNA-lncRNA co-expression network, including 113 
interactions between lncRNAs and mRNAs (p- value < 
0.05 and absolute value of correlation coefficient > 0.7). 
The network contained 30 lncRNAs and 40 mRNAs 
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(Figure 6A). The network showed the potential complex 
regulating relationship between lncRNAs and mRNAs. 
In the network, all the correlations between lncRNA and 
mRNA were positive (the absolute values of negative 
correlation coefficient were less than 0.7) and at least 24 
lncRNAs are significantly associated with multiple genes. 
Among the 40 mRNAs, 26 mRNAs overlapped with genes 
in mRNA lightgreen module and no overlaps with other 
three significant mRNA modules.

Filtration by GWAS results

To further narrow the range of key lncRNAs and 
mRNAs, we first performed GWAS for spontaneous lung 
cancer susceptibility. We then applied results to filter the 
mRNA-lncRNA co-expression network. We used nominal 
p value less than 0.05 as threshold and screened ± 500k 
nucleotides (nt) around each mRNA or lncRNA in the 
mRNA-lncRNA co-expression network. If there were risk 

SNPs locating around a mRNA or lncRNA (± 500k nt), 
we considered that this mRNA or lncRNA tended to be 
the key candidate associated with spontaneous lung cancer 
susceptibility. After filtration, we found that a highlight 
sub-network including 2 mRNAs and 2 lncRNAs (Table 4, 
Figure 6B). In this sub-network, expression of Myo7a was 
positively correlated with expression of lncRNAs n271850 
and n290048. And expression of n271850 was also 
positively correlated with expression of Zfp874a. Ranked 
by MM, Myo7a and Zfp874a were the third and seventh 
hub genes in mRNA lightgreen module, respectively. In 
lncRNA red module, n290048 and n271850 were the 10th 
and 11th hub genes ranked by MM (Table 5).

DISCUSSION

Spontaneous lung cancer susceptibility widely 
varies in different strains of mouse. To identify the 
candidate genes and network which could predict 

Figure 1: The pipeline of integration analysis to identify mRNA/lncRNA co-expression networks for spontaneous lung 
cancer susceptibility. 
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spontaneous lung cancer susceptibility, in this study, 
we constructed a co-expression network by microarray 
expression data from normal lung tissues of 23 different 
mouse strains. Comparing to traditional reductionist 
methods that may not be able to explore the overall map of 
gene interactions, systems genetics approach in this study 
could provide an unbiased and more comprehensive view 
of not only the genes involved in cellular function, but 
also key mRNA-lncRNA interactions. Using WGCNA, 
we generated 28 modules, each of which contained genes 
that shared similar expression patterns. Four modules 
showed significant association with the spontaneous lung 
cancer susceptibility. Using the connectivity between 
the genes in same module, we provided an objective 
filter for rank-ordering genes and found several sets of 
hub genes. We then elucidated the biological functions 
of significant modules via gene enrichment analysis. 
Meanwhile, we profiled the expression of lncRNAs by 
re-annotating the exon array data and applied WGCNA 
to construct a lncRNA co-expression network consisted 
of 7 modules. One of these modules was significantly 
associated with spontaneous lung cancer susceptibility. 
Through constructing mRNA-lncRNA co-expression 

network, we established a framework to map interaction 
between lncRNAs and mRNAs. To further pinpoint key 
lncRNAs and mRNAs, we conducted a GWA study and 
screened the SNPs around mRNAs or lncRNAs in mRNA-
lncRNA co-expression network. Two mRNAs (Myo7a and 
Zfp874a) and two lncRNAs (n290048 and n271850) were 
highlighted as the most important genes and lncRNAs for 
spontaneous lung cancer susceptibility prediction. This 
comprehensive system genetic analysis could provide 
critical insights into the underlying mechanisms for 
spontaneous lung cancer susceptibility.

In mRNA WGCNA, the white module showed the 
most significant correlation with spontaneous lung cancer 
susceptibility. Through GO analysis, genes in white 
module were identified to be mainly enriched in blood 
coagulation. However, there is no evidence showing 
the direct effect of blood coagulation on spontaneous 
lung cancer susceptibility. Genes in both midnightblue 
module and grey60 module were enriched in immune 
system process. Since the lung tissue used in this study 
were health and normal, it should not be caused by 
inflammation in tissues. The lung cancer occurring among 
non-smokers who never smoked was considered to be a 

Table 1: The mouse strains and spontaneous lung cancer susceptibility information in this study
Strain Frequency of spontaneous pulmonary adenomas (*100)

129S1/SvMJ 25
A/J 50

BALB/cBYJ 21
BTBRT+tf/J 23

BUB/BnJ 0
C3H/HeJ 0
C57BL/6J 3

C57BR/CD/J 8
C57L/J 10
CBA/J 8

DBA/2J 0
FVB/NJ 23
KK/H1J 0

LP/J 26
NOD/LtJ 6
NON/LtJ 12

NZW/LACJ 0
PL/J 14

PWD/PhJ 9
RIIIs/J 27
SM/J 21

SWR/J 33
WSB/Eij 9
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different disease, which were mainly adenocarcinoma and 
occurred most commonly in females and in patients at the 
older age [16]. Since the total morbidity of lung cancer 
was strongly correlated to the age, a possible cause of this 
type of cancer might be the senescence of immune system 
[17]. The immune system was considered to be able to 
kill cancer cells and inhibited tumor growth by innate and 
adaptive immunity [18]. Our results were consistent with 
these previous findings. The MEs of midnightblue module 
and grey60 module were negatively correlated with 
spontaneous lung cancer susceptibility. It suggested that 
mouse strains having higher expression of immune system 
related genes were less possible to have lung cancer.

In the mouse genome, only about 1.5% are 
proteincoding genes and the majority of transcripts are 
classified to noncoding RNAs (ncRNAs) [19]. LncRNA 

is one kind of ncRNAs named by its length (> 200 bp). 
Partially because of its length, the expression of lncRNA 
could be detected by mining existing microarray data, 
although the microarray is not designed for lncRNA 
analysis. The Affymetrix Exon Array contains more 
than 5.5 million probes. Its many probes designed for 
expressed sequence tags (ESTs) and prediction-based 
transcripts could uniquely map to the lncRNA sequences 
[14]. Comparing with conducting a new RNA sequencing 
experiment, it is a relatively cost-effective approach to 
analyze the lncRNAs by re-proposing the microarray 
probes for lncRNA expression. In this study, we detected 
24,670 lncRNAs expression by re-annotating the 
microarray probes and 23,333 mRNAs expression at the 
same time. Thus, we could perform integrative analysis on 
the interaction between lncRNAs and mRNAs.

Table 2: Four mRNA modules significantly associated with spontaneous lung cancer susceptibility 
and top 10 hub genes in each module (ranked by module membership)

Modules Top 10 hub genes
White Itga2b, Alox12, Gp9, Slc2a3, Pf4, P2rx1, F5, Ppbp, Itgb3, P2ry12

Lightgreen Mtmr7, Tmem254a, Myo7a, Casc4, Asah1, Ccdc21, Zfp874a, Bub1b, Art4, Zfp619
Midnightblue Hcls1, Itgal, Evi2b, Arhgap9, Coro1a, Selplg, Myo1f, Slc11a1, Dok3, Myo1g

Grey60 Slfn4, Dhrs9, Mmp9, Gm11428, Retnlg, Mmp8, Cxcr2, S100a9, Prok2, S100a8

Figure 2: Gene co-expression network analysis of mRNAs by WGCNA. (A). Hierarchical cluster dendrogram of the 7,500 
most variable and connected genes in the lung transcriptome. Modules corresponding to branches are labeled with colors indicated by the 
color bands underneath the tree. (B). Module-trait relationships. Each row corresponded to a module eigengene. Module eigengenes (MEs) 
were defined as the first principal component calculated using PCA, which can summarize modules’ behavior. Number in each cell shows 
the correlation of the corresponding module eigengene and spontaneous lung cancer susceptibility, with the p-value printed below the 
correlation. The cell color was coded by correlation according to the color legend.
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With the expression profile of lncRNAs, we 
constructed a lncRNA co-expression network and found 
a module significantly correlated with spontaneous 
lung cancer susceptibility. Totally, 47 lncRNAs were 
included in this module. To infer the biological function 
of lncRNAs in spontaneous lung cancer susceptibility, 
we explored the potential regulatory relationship among 
lncRNAs in red module and mRNAs in WGCNA process. 
40 mRNAs were found to be co-expressed with 30 
lncRNAs in red module (|r| > 0.7 and p value < 0.01). 
When we loaded these 40 mRNAs for gene enrichment 
analysis, similar to lightgreen module in mRNA WGCNA, 
a loose structure was generated and no significant GO 
term was found. Meanwhile, among these 40 mRNAs, 
26 mRNAs overlapped with genes in lightgreen module 
in mRNA WGCNA. It inferred that expression of genes 
in mRNA lightgreen module may be regulated by 
lncRNAs clustered in lncRNA red module. These genes 

and lncRNAs were strongly associated with spontaneous 
lung cancer susceptibility. However, based on the known 
pathway database, we could not conclude the mechanism 
in which this mRNA-lncRNA co-expression network 
involved, and further investigation is needed to explore its 
effect on spontaneous lung cancer susceptibility.

Using GWA results to filter the mRNA-lncRNA co-
expression network, we detected a sub-network including 
mRNAs (Myo7a and Zfp874a) and two lncRNAs 
(n290048 and n271850). There were trait-associated 
SNPs in ± 500k base pairs up- or down-stream of these 
mRNAs and lncRNAs. Gene Myo7a on chromosome 7 
encodes Myosin VIIA. The biological function of Myo7a 
was mainly found to be associated with Usher Syndrome, 
Type I [20] and Deafness [21]. No direct association 
between Myo7a and lung cancer is found. Zfp874a 
encodes zinc finger protein 874a and there is no literature 
on relationship between Zfp874a and lung cancer. As 

Table 3: Gene enrichment analysis in four mRNA modules significantly associated with spontaneous 
lung cancer susceptibility

Modules pathway ID pathway 
description

observed 
gene count

Module 
size

false 
discovery rate matching proteins

White GO.0007596 blood 
coagulation 13 33 1.59E-18

F13a1, F2rl2, Fermt3, Gp1ba, 
Gp5, Gp9, Itga2b, Itgb3, P2rx1, 

P2ry12, Pf4, Plek, Treml1
Lightgreen NS. NS. NS. 58 NS. NS.

Midnightblue GO.0002376
immune 
system 
process

27 63 1.76E-13

Btk, Calcr, Cd300a, Cd300lb, 
Cd300ld, Clec5a, Coro1a, Ctse, 

Fcer1g, Fgr, Gapt, H2-DMa, 
Hcls1, Itgal, Myo1f, Myo1g, 

Nfam1, Pld4, Psmb8, Pstpip1, 
Selplg, Sfpi1, Slc11a1, Spn, 

Tlr13, Tnfaip8l2, Tyrobp

Grey60 GO.0002376
immune 
system 
process

23 59 6.16E-10

Camp, Ccr1, Cd300lf, Clec4d, 
Clec4e, Csf3r, Ctsg, Elane, 

G6pdx, Il1f9, Itgam, Mcpt8, 
Mmp9, Mpo, Oas3, Padi4, 

Pglyrp1, Prg2, Prtn3, S100a8, 
S100a9, Slc40a1, Trem1

Table 4: GWAS filtration for each mRNA or lncRNA in the mRNA-lncRNA co-expression network
Nearby genes Rs# Alleles Chromosome Position P value

lncRNA n290048 mm37-11-113092526 A/T 11 1.13E+08 0.03
lncRNA n271850 mm37-13-67762022 G/C 13 67762022 0.01

Myo7a mm37-7-105198157 C/T 7 1.05E+08 0.03
Myo7a mm37-7-105203202 G/A 7 1.05E+08 0.03
Myo7a mm37-7-105267807 C/G 7 1.05E+08 0.02
Myo7a mm37-7-105277395 A/G 7 1.05E+08 0.02

Zfp874a mm37-13-67503131 C/T 13 67503131 0.01
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Figure 3: The 10 most enriched GO (Biological process) terms in four significant mRNA modules (No significant 
enrichment for light green module). (A) The 10 most enriched GO terms in white module. (B) The 10 most enriched GO terms in 
midnight module. (C) The 10 most enriched GO terms in grey60 module. 

Table 5: lncRNAs and mRNAs in the highlighted sub-network
Rank in the 

modules Module Module membership Chromosome Start Stop Strand Annotation

3 lightgreen 0.89 chr7 1.05E+08 1.05E+08 - Myo7a
7 lightgreen 0.83 chr13 6.75E+07 6.76E+07 - Zfp874a
10 red 0.79 chr11 1.13E+08 1.13E+08 - n290048
11 red 0.79 chr13 6.78E+07 6.78E+07 - n271850
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Figure 4: Gene-gene interaction networks in significant mRNA modules. The network was built using STRING software and 
meaning of network edges was based on interaction evidence. (A) Genes in white module were enriched in GO.0007596~ blood coagulation 
(FDR < 0.001). (B) The known connections of genes in lightgreen module were poor. No significant gene enrichment was detected. The 
minimum required interaction score for this module was reduced to 0.15 (default was 0.4) to explore the potential interactions. (C, D). 
Genes in midnight and grey60 modules were both enriched in GO.0002376~ immune system process (FDR < 0.001). 
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a pilot study, the limitation of our project was that no 
validation experiment of identified genes and lncRNAs 
was conducted. The biological function of the mRNAs 
(Myo7a and Zfp874a) and lncRNAs (n290048 and 
n271850) in lung tissue still requires further investigation.

In summary, we performed a comprehensive system 
genetic study for spontaneous lung cancer susceptibility. 
We reported, for the first time, the mRNA/lncRNA modules 
associated with spontaneous lung cancer susceptibility. Our co-
expression network among lncRNAs and mRNAs may provide 

Figure 5: Gene co-expression network analysis of lncRNAs by WGCNA. (A) Hierarchical cluster dendrogram of the 7,500 
most variable and connected lncRNAs in the lung transcriptome. Modules corresponding to branches are labeled with colors indicated by 
the color bands underneath the tree. (B) Module-trait relationships. Each row corresponded to a module eigengene. Module eigengenes 
(MEs) were defined as the first principal component calculated using PCA, which can summarize modules’ behavior. Number in each cell 
shows the correlation of the corresponding module eigengene and spontaneous lung cancer susceptibility, with the p-value printed below 
the correlation. The cell color was coded by correlation according to the color legend.

Figure 6: The mRNA-lncRNA co-expression network associated with spontaneous lung cancer susceptibility. (A) The 
mRNA-lncRNA co-expression network was constructed among all mRNAs in WGCNA analysis and lncRNAs in top 1 lncRNA module, 
ranked by the correlation between modules and spontaneous lung cancer susceptibility. The thickness of the edge was based on correlation 
coefficient between each pair. (B). The highlight subnetwork associated spontaneous lung cancer susceptibility filtered by GWA results. 
Each edge showed that the pair of nodes were co-expressed with each other.
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novel insights of the pathophysiological mechanism of lung 
cancer and suggest effective targets for lung cancer prevention.

MATERIALS AND METHODS

Mice strains and lung tumor susceptibility

In current study, transcriptional data were collected 
from previous work in our lab [5]. Briefly, transcriptomes 
were screened in in normal lung tissues from 40 laboratory 
inbred mouse strains ssing Affymetrix Mouse Exon 1.0 
ST microarrays. The strains were 129S1/SvImJ, 129X1/
SvJ, A/J, AKR/J, BALB/cByJ, BTBR_T + _tf/J, BUB/
BnJ, C3H/HeJ, C57BL/6J, C57BR/cdJ, C57 L/J, C58/J, 
CAST/EiJ, CBA/J, CE/J, CZECHII/EiJ, DBA/1J, DBA/2J, 
FVB/NJ, JF1/Ms, KK/HlJ, LG/J, LP/J, MA/MyJ, MOLF/
EiJ, MSM/Ms, NOD/LtJ, NON/LtJ, NZB/BlNJ, NZW/
LacJ, PERA/EiJ, PL/J, PWD/PhJ, RIIIS/J, SEA/GnJ, 
SJL/J, SM/J, SPRET/EiJ, SWR/J, and WSB/EiJ. Three 
female and three male mice were included in each strain. 
Seven-week old mice were purchased from the Jackson 
Laboratory (Bar Harbor, ME, USA) and housed for one 
week in the Washington University Animal Facility. At 
the age of eight weeks, all mice were killed by cervical 
dislocation. RNA from lung tissues were isolated for exon 
array analyses. In this study, all the lung tissues were 
normal and health.

The data about spontaneous incidence of pulmonary 
adenomas was collected from an earlier published survey of 
28 inbred mouse strains [6]. Briefly, Annerose et al. examined 
28 strains of inbred mice for pulmonary adenomas. All 
investigated mice were obtained, raised, and maintained at the 
breeding facilities of The Jackson Laboratory (Bar Harbor, 
ME, USA). Mice were transferred to a specific pathogen-
free room at an age of six to eight weeks until they were 
euthanized by CO2 asphyxiation at 20 months (± 28 days) 
of age. Frequency of pulmonary adenomas were defined 
by percentage of mice per strain diagnosed as pulmonary 
adenomas with one or more of the lesions. 23 strains 
overlapped between this survey and our exon array analyses. 
We combined our exon array data and the spontaneous 
incidence of pulmonary adenomas from Annerose’s study of 
these 23 strain mice to develop the following study.

RNA data preprocessing and lncRNA re-
annotation

For mRNA analyses, all raw CEL files were 
imported, normalized, background corrected and 
summarized by the Affymetrix Power Tools (APTs) 
(http://www.affymetrix.com).

For lncRNA analyses, the microarray data were 
reannotated using the software noncoder (http://noncoder.
mpi-bn.mpg.de/#) [14]. This software was developed for 
annotating probes that uniquely map to lncRNAs [14]. 
Briefly, APTs were applied to pre-process the data. Then, 

the probesets were filtered by the following steps: (1) 
lncRNAs with less than 3 probes were removed; (2) probes 
overlapping with protein-coding genes were discarded; 
and (3) probes were only mapped to known lncRNAs in 
NONCODE v3.0 [22].

Weighted gene co-expression network analysis

Network analysis was performed using WGCNA R 
package [23, 24]. First, we calculated Pearson correlation 
coefficients for all gene-gene comparisons across microarray 
samples. Then, the matrix of correlations was converted to an 
adjacency matrix of connection strengths. The adjacencies 
were defined as a cor x xij i j= ( , )

β
, where xi and xj are the ith 

and jth gene expression traits. The parameter β was selected 
using the scale-free topology criterion previously outlined by 
Zhang and Horvath [25]. We chose a power of 6, which 
resulted in an approximate scale-free topology network with 
the scale-free fitting index R2 greater than 0.8. Modules were 
defined as sets of genes with high topological overlap. The 

topological overlap measure (TOM) Tom
a a a

k k aij
u i j iu uj ij

i j ij

=
+

( ) + −
≠∑ ,

min , 1
, 

where ∑ ≠u i j a aiu uj,  denotes the number of nodes to which both  
i and j are connected, and u indexes the nodes of the network. 
A TOM-based dissimilarity measure (1 – TOM) was used for 
hierarchical clustering. Gene modules corresponded to the 
branches of the resulting dendogram and were precisely 
defined using the “dynamic hybrid” branch-cutting algorithm 
[26]. Module eigengenes (MEs) were defined as the first 
principal component calculated using PCA, which can 
summarize modules’ behavior. These MEs were tested for 
association with spontaneous lung cancer susceptibility by 
Pearson Correlation. The module membership (MM) (also 
referred as intramodular connectivity) of gene i in module q, 
kME value, was defined as the absolute value of Pearson 
correlation between its gene expression and the module 
eigengene. Specifically, kME i cor x MEq i q( ) = ( , ) , where MEq 
is the module eigengene of the module q. Note that it 
specifies how close gene i is to module q and does not require 
that gene i to be a member of the module q. MM can be used 
to find hub genes, which are highly interconnected nodes 
within gene co-expression modules [23, 27, 28]. The module 
hub gene was defined as the gene in the module with the 
highest connectivity or based on a high intra-modular 
connectivity (MM > 0.75). Similarly, lncRNA genes were 
also calculated to have the lncRNA modules.

Gene enrichment analysis

To analyze the potential pathways that traits 
(spontaneous lung cancer susceptibility) associated modules 
involved in, we loaded all genes in top four modules (ranked 
by p value) into the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) [29, 30]. For each 
module, we examined enrichment of Biological Process 
gene ontology (GO) terms. The threshold for significant 

http://www.affymetrix.com
http://noncoder.mpi-bn.mpg.de/#
http://noncoder.mpi-bn.mpg.de/#


Oncotarget350www.oncotarget.com

enrichment was FDR < 0.05. The gene-gene interaction 
networks were drawn via STRING software [31].

mRNA-lncRNA co-expression network

The mRNA-lncRNA co-expression network was 
constructed among all mRNAs in WGCNA analysis 
and lncRNAs in top 1 lncRNA module, ranked by the 
correlation between modules and spontaneous lung cancer 
susceptibility. Based on the expression of each mRNA and 
lncRNA, correlation coefficient and p value are obtained 
for each mRNA-lncRNA pair. The thresholds in this study 
for filtering were absolute correlation coefficient no less 
than 0.7 and adjusted p value less than 0.01. The filtered 
mRNA-lncRNA pairs consist the co-expression network.

GWAS results filtration

The SNP data were obtained from the Mouse HapMap 
Imputed Genotype Resource (http://mouse.cs.ucla.edu/
mousehapmap/), which contained 132k SNPs on commonly 
used mouse-inbred strains. General Linear Model (GLM) 
in software TASSEL version 5.0 [32] was used to perform 
association analysis between SNP and spontaneous lung 
cancer susceptibility. We used nominal p value less than 0.05 as 
threshold and screened ± 500k base pairs around each mRNA 
or lncRNA in the mRNA-lncRNA co-expression network.
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