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ABSTRACT

The main non–small-cell lung cancer (NSCLC) histopathological subtypes are 
lung adenocarcinomas (LUAD) and lung squamous cell carcinomas (LUSC). To 
identify candidate progression determinants of NSCLC subtypes, we explored the 
transcriptomic signatures of LUAD versus LUSC. We then investigated the prognostic 
impact of the identified tumor-associated determinants. This was done utilizing DNA 
microarray data from 2,437 NSCLC patients. An independent analysis of a case series 
of 994 NSCLC was conducted by next-generation sequencing, together with gene 
expression profiling from GEO (https://www.ncbi.nlm.nih.gov/geo/).

This work led us to identify 69 distinct tumor prognostic determinants, which 
impact on LUAD or LUSC clinical outcome. These included key drivers of tumor 
growth and cell cycle, transcription factors and metabolic determinants. Such disease 
determinants appeared vastly different in LUAD versus LUSC, and often had opposite 
impact on clinical outcome. These findings indicate that distinct tumor progression 
pathways are at work in the two NSCLC subtypes. Notably, most prognostic 
determinants would go inappropriately assessed or even undetected when globally 
investigating unselected NSCLC. Hence, differential consideration for NSCLC subtypes 
should be taken into account in current clinical evaluation procedures for lung cancer.

INTRODUCTION

Lung cancer is traditionally classified as non–
small-cell lung cancer (NSCLC) and small-cell lung 
cancer (SCLC) [1]. The two cancer types differ in 
histopathological traits, genetic changes, prognosis and 
response to therapy [1]. However, while the usefulness 
of distinguishing NSCLC from SCLC is clear, far less 
clear is the reason for jointly categorizing distinct NSCLC 
subtypes. NSCLC is the most common type of lung cancer, 
with a poor response to chemotherapy and a low survival 
rate. This unfavorable treatment response stems from both 
late diagnosis and from complex, incompletely understood 
biology. The two main NSCLC histopathological subtypes 

are lung adenocarcinomas (LUAD) and lung squamous 
cell carcinomas (LUSC). To define the contribution of 
major cellular pathways to the biogenesis of LUAD 
versus LUSC, we profiled their transcriptomic signatures, 
identified the corresponding control networks and defined 
key prognostic determinants of biological outcome.

Distinct gene sets have been shown to differentially 
associate to LUAD versus LUSC. In a study by 
Charkiewicz et al. [2] a 53 gene signature was identified 
as diagnostic between LUSC and LUAD [2]. Additional 
gene sets were identified by Liu et al. [3]. LUAD-
associated genes included tight junction and cell adhesion 
components. Diagnostic assessment revealed p63, TTF1, 
CK5/6, and Napsin A as efficient diagnostic discriminants 
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for LUAD versus LUSC [4]. Other groups [5, 6] identified 
gene expression signatures in LUAD patient case series. 
Overall, though, the studies above did not provide a 
coherent picture of the tumor progression trajectories of 
NSCLC subtypes. Furthermore, no high-impact prognostic 
indicators were consistently identified.

We reasoned that key determinants of tumor 
identity were likely to be important contributors to the 
biological history of a tumor. Such determinants would 
correspondingly impact on the prognosis of distinct 
NSCLC subtypes. Hence, we went on to explore potential 
indicators of clinical outcome, by separately analyzing 
individual determinants associated to distinct NSCLC 
subtypes. This was done utilizing transcriptomic DNA 
microarray and associated clinical data from 2,437 
NSCLC patients [7]. We examined the impact of gene 
expression levels in primary tumors on the progression 
status in NSCLC patients following surgical treatment. 
Transcriptomic analysis was extended with next-
generation sequencing (NGS) of an independent NSCLC 
case series, to provide technology bias-independent 
assessment of prognostic mRNA determinants. Expression 
at the protein level was extensively assessed to validate all 
the markers utilized in the study.

Our findings led to the discovery of sets of genes 
that differentially determine disease outcome in distinct 
subgroups of lung cancers. These included key drivers 
of tumor growth, which were differentially involved in 
LUAD versus LUSC development. Our findings provide 
novel insight into the biological history of LUAD and 
LUSC and indicate that distinct tumor progression 
pathways are at work in the two main NSCLC subtypes.

RESULTS

Prognostic determinants in LUAD versus LUSC

Disease-associated determinants were predicted 
to bear on clinical outcome. We thus went on to explore 
the prognostic power of genes that were differentially 
expressed in LUSC versus LUAD. TROP2 is a widespread 
driver of tumor progression [8–10], and was shown to have 
a negative bearing on unselected cases of NSCLC (Figure 
1A). Notably, though, our findings indicated that TROP2 
has a vast negative prognostic impact on LUAD, but 
only a marginal one on LUSC, where Trop-2 expression 
associates to terminal differentiation to cornified cells 
[11], with formation of keratin pearls (Figure 1A). Parallel 
findings were obtained for TP63, which we had previously 
shown to be both an upstream driver of Trop-2 [8, 9] and 
a downstream effector [12]. TP63 is a powerful diagnostic 
discriminant [13], and a cancer prognostic [14] and 
predictive [15] factor. Consistent, TP63 overexpression 
was shown to have a strong negative impact on LUAD. 
However, it did associate to a trend for protection in LUSC 
(Figure 1B, Supplementary Table 1).

These findings raised the issue that LUSC and 
LUAD may follow profoundly distinct tumor progression 
trajectories. Hence, we went on to first systematically 
identify differentially expressed genes in LUAD versus 
LUSC, through supervised analysis of in silico datasets 
(Table 1, Supplementary Table 1). Then, we assessed such 
differentially expressed genes for impact on malignant 
progression of the two NSCLC subtypes [7]. A case series 
of breast cancer patients [16] was utilized as comparison 
benchmark.

Charkiewicz et al. [2] performed DNA microarray 
gene expression profiling in a training set of 108 NSCLC 
samples and a validation cohort of 44 samples [2]. 
This led to identify a 53 gene signature that efficiently 
discriminated LUSC from LUAD [2]. Additional gene sets 
were identified by Liu et al. [3]. Diagnostic trials identified 
p63, TTF1, CK5/6, and Napsin A as selectively associated 
to LUAD versus LUSC [4]. Chang and colleagues [6] 
found a 74-gene signature that discriminated LUAD 
versus LUSC. Lu and colleagues [5] identified a set of 16 
differentially-expressed genes, as involved in the apoptotic 
execution phase.

The sets of differentially expressed genes identified 
above were parsed for redundancy and validated in silico 
for differential expression in LUAD versus LUSC. These 
genes were then systematically assessed for prognostic 
impact in LUAD versus LUSC, through meta-analysis 
of DNA microarray data from 2,437 NSCLC patients 
through the KMPlot database (http://www.kmplot.com). 
Cox regression analysis was performed and Kaplan–
Meier (KM) survival plots were obtained. This led us to 
identify 69 genes (33 diagnostic for LUSC, 15 associated 
to LUAD, 21 which were not diagnostic for cancer type), 
that had significant bearing on prognosis of at least one 
tumor type (Supplementary Table 1). Remarkably, only 
8% of LUSC-diagnostic genes and 21% of LUAD-
diagnostic genes showed a concordant impact on lung 
cancer diagnosis. Strikingly, impact profiles were more 
similar to benchmark breast cancers (25% of LUAD 
parameters; 31% of LUSC parameters) than between 
NSCLC subtypes (Supplementary Table 1, Figures 2-5). 
Dramatic examples were those of DSG3, SERPINB13, 
FOXE1, GRHL3, DLX5, TMPRSS11D, TESC, which had 
a negative prognostic impact on LUAD, but a positive 
one in LUSC (Figures 4, 5A). Prognostic impact was 
often obscured when LUAD and LUSC were categorized 
together as NSCLC, e.g. in the case of JAG1, S100A1, 
KRT7, RPTPB, CSPG6, PDGFB (Supplementary Table 
1). Further, determinants such as CLND3, TESC, which 
were high-risk indicators in LUAD, were detected as 
positive prognostic factors in unselected NSCLC (Figure 
5A, Supplementary Table 1), and determinants such as 
ATP1B3, HPCAL3, COL4A6, SLUG, PARD6G, SOX2, 
CLCA2, STF1, SKP2, which were positive indicators in 
LUAD, were detected as negative prognostic factors in 
unselected NSCLC (Figure 5A, Supplementary Table 1).



Oncotarget35530www.oncotarget.com

To validate DNA microarray findings, tumor 
transcriptomes were profiled by next-generation 
sequencing (NGS), as an orthogonal technology versus 
mRNA quantification by hybridization [17]. NGS analysis 
was conducted on series of 500 LUAD and 494 LUSC 
cases (https://www.proteinatlas.org/) (Supplementary 
Table 2). Raw data were obtained for primary assessment, 
and were computed as scatter plots of individual survival 
values (Supplementary Table 3).

Comparisons of NGS KM curves versus DNA 
microarray analysis of corresponding parameters were 
conducted. Concordance of prognostic impact with 
significant P values, or correspondence of lack of 
significant prognostic in specific subgroups were listed. A 
preliminary quality filter was introduced that eliminated 
graphs with subgroups of low numerousness (≤100 
patients) and cases where the investigated parameter 

was not detected. Among LUSC diagnostic parameters 
(96 KM analyses) discordant impact was detected in 14 
cases (14.6%). Among LUAD diagnostic parameters (48 
KM analyses) discordant impact was detected in 10 cases 
(20.8%). Among parameters that were not subtype-related 
(63 KM analyses) discordant impact was detected in 20 
cases (31.7 %). Overall, among the 207 KM validated 
analyses, discordant impact was detected in 44 cases 
(21.3%) for an overall, highly reliable 78.7% concordance 
across survival analyses.

Prognostic genes with the highest impact on 
disease progression

Genes whereby high versus low expression 
best discriminated between progressing versus non-
progressing tumors encompassed growth factor and 

Figure 1: Differential genetic diagnostic and prognostic impact on LUAD versus LUSC. DNA microarray data from 
2,437 NSCLC patients were preprocessed and meta-analyzed through the KMPlot database (http://www.kmplot.com). Gene 
expression data were downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/), using clinical survival information and 
minimum patient numbers as threshold. Databases containing high-resolution IHC images were analyzed for patterns of 
expression of differential diagnostic and prognostic proteins for lung LUAD versus LUSC (https://www.proteinatlas.org/). 
(A) KM survival curves of high (red) versus low (black) TROP2 expressors. Median survival, HR and correlated P values are 
indicated. (B) KM survival curves of high (red) versus low (black) TP63 expressors. Median survival, HR and correlated P 
values are indicated. (right side of the panels) IHC analysis of the expression of the Trop-2 or p63 proteins in LUSC or LUAD.
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growth factor receptors, transcription factors, cell 
cytoskeleton and cell-cell junction components, together 
with constituents of the intercellular matrix (Table 1). 
Overexpression of the transforming growth factor (TGF) 
receptor 2 gene (TGFBR2) was shown to associate with 
less aggressive disease courses in LUSC. Correspondingly 
protective determinants for LUAD were IGF1R and 
PDGFA, whereas PDGFB had a negative prognostic 
impact on LUAD. Keratins are used as IHC markers in 
clinical diagnostic assays, e.g. keratin 5 and 6 for LUSC 
diagnosis, keratin 7 for LUAD identification. Notably, 
though, all overexpressed keratins, i.e. KRT5A, KRT6A, 
KRT7, KRT14, KRT17, were found to play a role as 
LUAD tumor progression determinants. The collagen 
gene COL4A6 was shown to be a LUAD protective 
factor, whereas COL7A1 associated to worse prognosis. 
SERPINB5/maspin and SERPINB13 overexpression 
associated to worse disease outcome in LUAD, but 
showed a protective role in LUSC.

Pathway regulation by prognostic genes in lung 
cancer

The functional role of the identified prognostic genes 
was assessed versus categorized gene expression data from 
GEO (https://www.ncbi.nlm.nih.gov/geo/). Main pathways 
were found to be regulation of the cell cycle (GSK3B, ATR, 
SKP2, CDK1, CDK2, CDK4, SMC3, PLK1, CCND3), 
control of DNA replication (RFC2, PRIM2, MCM4, 
MCM5) and DNA repair (ATR). Cell differentiation 
appeared also involved, as the transcription factors TTF1, 
a main LUAD protective factor, is a key player in lung 
epithelium development. QSOX1, SOX2, SLUG, STF1 
were all associated to a more benign course of disease, 
suggesting control of tumor initiation and cancer stem-
cell functions versus epithelial-mesenchimal transition 
in NSCLC. SOX2, and TP63 are often coamplified and 
their overexpression is associated to favourable disease 
outcome (Figures 1B, 3, 4) [18]. Cell-cell adherent junction 

Table 1: Prognostic determinants in LUAD versus LUSC

LUSC prognostic determinants

 ◦LUSC diagnosisa

  ▪Protective factors: DSG3, SERPINB13, MRP5, FOXE1, GRHL3, DLX5
  ▪Tumor progression determinants: SFN

 ◦LUAD diagnosis b

  ▪Protective factors: FOLR1, PLEKHA6
  ▪Tumor progression determinants: SFTA3

 ◦Not associated to diagnosis c

  ▪Protective factors: SKP2, TGFBR2
  ▪Tumor progression determinants: MPP5, E2F

LUAD prognostic determinants

 ◦LUSC diagnosisa

  ▪ Protective factors: ATP1B3, HPCAL3, SFTA2, COL4A6, MRP5, SLUG, PARD6G, SOX2, CLCA2, RPTPB, JAG1, 
STF1

  ▪ Tumor progression determinants: KRT5A, KRT6A, KRT14, KRT17, PERP, SERPINB5, SERPINB13, COL7A1, 
DSG3, TRIM29, FGFBP1, GLUT1, SFN, TMPRS11D, FOXE1, GRHL3, PTHLH, S100A1, DLX5, ST6GALNAC2

 ◦LUAD diagnosis b

  ▪ Protective factors: TMEM125, TTF1, TASK2, TMC5, ACSL5, FOLR1, RORC, QSOX1, SFTA3, CEACAM6, 
ATP11A, PLEKHA6

  ▪Tumor progression determinants: KRT7, TESC, CLDN3

 ◦Not associated to diagnosis c

  ▪ Protective factors: GSK3B, ATR, SKP2, SMC3, CCND3, PRIM2, IGF1R, TGFBR2, CTNND1, CASK, MPP5, 
CTGF, PDGFA

  ▪Tumor progression determinants: PRPF19, MCM4, MCM5, RFC2, PLK1, CDK2, PDGFB, E2F

aUtilized for LUSC diagnosis.
bUtilized for LUAD diagnosis.
cCancer drivers that are not utilized for differential diagnosis of NSCLC subtypes.
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Figure 2: Survival curves of LUAD, LUSC versus unselected NSCLC. DNA microarray data from 2,437 NSCLC patients 
were preprocessed and meta-analyzed through the KMPlot database (http://www.kmplot.com)/GEO (https://www.ncbi.nlm.nih.gov/geo/) 
as described. KM survival curves of high (red) versus low (black) expressors of the genes indicated on the right are shown. Median survival, 
HR and correlated P values are indicated. (upper panels) favourable prognostic determinants for LUAD. (mid panels) unfavourable 
prognostic determinants for LUAD. (lower panels) unfavourable prognostic determinants for LUAD with positive impact on LUSC.
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components, such as CTNND1, CASK, MPP5, were 
associated to a better prognosis of LUAD, likely because 
of retained cell-cell junctions and epithelial differentiation. 
High levels of the transmembrane protease TMPRSS11D 
were previously shown to predict poor overall survival 
in NSCLC [19]. Our findings show that this is entirely 
due to the dismal outcome of expressing LUAD, as 
TMPRSS11D is associated to favourable prognosis in 
LUSC (Supplementary Table 1).

Network analysis

Whole transcriptome profiling of LUAD versus 
LUSC and differential prognostic analysis were utilized 
to reveal potential malignant progression-inducing 
modules, for intra-group and inter-group differentiation. 
Control networks involved in cell growth and apoptosis 
were shown to be profoundly different in LUAD versus 
LUSC [3, 6, 8, 20, 21] (Figure 6). A pivotal p53/p63/p73 
axis only emerged in LUSC (Figure 6, left panel) [20]. 
Additionally different molecular networks between lung 
LUAD and LUSC were found in the control of cell cycle, 
DNA repair, and metabolic pathways.

Proteomic signature of the differential 
prognostic profiles

Analysis conducted at the RNA level were extended 
to the protein level (Supplementary Table 4). In silico IHC 
analysis was conducted, for expression of the encoded 
proteins in independent cases of patients with lung cancer 
(Supplementary Table 4). Antibody staining validation 
included immunofluorescence, Western blotting, reactivity 
against recombinant protein and comparison of staining 
patterns of independently-generated antibodies (https://
www.proteinatlas.org/about/assays+annotation#iha). 
All IHC images were checked for staining intensity and 
fraction of stained cells. Consistent, proteins encoded 
by genes preferentially associated to LUAD versus 
LUSC were found preferentially overexpressed by the 
corresponding tumor types. Only a few exceptions were 
found, consistent with an additional layer of regulation at 
the protein translation level. Keratin 17 was indeed found 
frequently overexpressed also in LUAD, thus questioning 
its diagnostic role in distinguishing between the two 
tumor types. Corresponding findings were obtained for 
JAG1. FGFBP1 and ST6GALN2 proteins were found 

Figure 3: Quantitative impact of prognostic determinants in LUAD, LUSC and breast cancer. Bar plots show the hazard 
ratio (HR)/prognostic impact on overall survival of LUAD, LUSC, NSCLC and breast cancer (http://www.kmplot.com). LUSC-associated 
genes (upper panel) and LUAD-associated genes (bottom panel) are shown. The genes are listed in descending order of HR values in each 
tumor type. The red line indicates HR = 1. The bar graphs are plotted on a log scale.

http://www.proteinatlas.org/about/assays+annotation#iha
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to be weakly expressed in lung cancers irrespective of 
tumor type.

DISCUSSION

Lung cancer is the most common cause of cancer 
death worldwide, with an estimated 1.6 million deaths 
each year [22, 23]. NSCLC are often diagnosed at an 
advanced stage, and the overall 5-year survival for 
these patients is only 15%–20%. Particular histotypes of 
NSCLC may display distinct molecular characteristics 
and molecular determinants, which may associate with 
distinct histopathological and genetic characteristics of 
lung cancer [6]. However, current clinico-pathological 
staging procedures appear profoundly inadequate to 
dissect NSCLC into patient groups with distinct biological 
outcome.

Transcriptome analysis has the potential 
to discriminate between distinct tumor types [1]. 
Transcriptome analysis of independent cohorts of NSCLC 
cases by Charkiewicz et al. [2] led to the identification 
of 53 genes, that were differentially expressed in LUSC 
versus LUAD. Additional gene-sets were identified by Liu 

et al. [3]. These differentially expressed genes appeared 
involved in pathways related to cell proliferation, signal 
transduction and metabolism. Diagnostic trials identified 
p63, TTF1, CK5/6, and Napsin A as selectively associated 
to LUAD versus LUSC [4]. Chang and colleagues 
[6] found a 21-gene signature in the HMGB1/RAGE 
signaling pathway, 22 risk-modulatory genes of the ERK 
pathway, as triggered by beta-adrenergic receptors, and a 
31-gene signature as associated to clathrin-coated vesicle 
recycling. Lu and colleagues [5] identified gene expression 
signatures in 700 LUAD cases. Among them, a set of 16 
genes appeared involved in the control of the apoptotic 
execution phase. Transcriptional network analysis showed 
involvement of E2F, CTGF, and PDGF in lung cancer 
pathogenesis [21]. Additionally, LUSC show involvement 
of the EGF, IL1F8, and CX3CL1 pathways, while changes 
in Rb1, miR-200, and EMP2 targets appear specific for 
LUAD [21].

Despite these efforts, little consistency was found 
across independent studies [6]. Inadequate study design, 
small sample size and varied data analysis strategies 
negatively influenced study outcomes. An epitomic 
analysis of 47 published gene expression signatures, 

Figure 4: Distribution of disease-outcome values for prognostic LUAD versus LUSC determinants. Forest plots summarize 
the impact of individual determinants overexpressed in LUSC versus LUAD, with opposite prognostic impact in LUAD versus LUSC. The 
dashed line indicates an HR = 1. Median risk values are indicated by dots. Confidence intervals are indicated by horizontal bars. The graphs 
are plotted on a log scale. Comparative distribution versus undissected NSCLC is reported in Supplementary Table 1E.
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Figure 5: Opposite prognostic determinants in LUAD versus LUSC. (A) Forest plots of the impact of individual determinants 
overexpressed in LUSC versus LUAD, with divergent prognostic impact on prognosis of LUAD, LUSC or NSCLC. The dashed line 
indicates an HR = 1. Median risk values are indicated by dots. Confidence intervals are indicated by horizontal bars. The graphs are plotted 
on a log scale. (B) IHC analysis of the expression of the encoded proteins of representative genes in LUSC or LUAD. Representative 
examples of average protein expression levels (https://www.proteinatlas.org) are reported.

http://www.proteinatlas.org
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indicated that the predictive performance of several 
signatures was not superior to that obtained from random 
gene expression signatures, and sometimes performed 
even worse [6]. Rather unsettling, over 90% of random 
signatures with more than 100 gene members appeared to 
bear a value as significant predictors of disease outcome 
[6]. Not surprisingly, to date, the only molecular traits that 
are of current use in clinical practice for prognostic and 
therapeutic purposes are genomic mutations of EGFR and 
KRAS and gene fusions of ALK.

We speculated that a main structural weakness 
of previous approaches was a blunt, overall assessment 
of NSCLC, as if they were a homogeneous tumor type. 
Categorization of divergently associated determinants 
was thus expected to be blurred, if not entirely lost, in 
such joint classification of NSCLC. Further, association to 
specific tumor histotypes is expected to stem from at least 
two distinct and opposing mechanisms. One is positive 
selective pressure for increased fitness and/or proliferative 
capacity of expressing cells. A second one is retention 
of differentiation traits. As such, the first mechanism is 
expected to be linked to malignancy, the second one, an 
example is Trop-2 expression terminally differentiated 
cornified cells in LUSC, is expected to be linked to more 
benign outcomes. These and additional findings supported 
the idea of reassessing NSCLC in a dichotomic scenario.

We thus decided to explore potential indicators 
of clinical outcome, by separately assessing individual 
determinants versus association to distinct NSCLC 
subtypes. This was done utilizing DNA microarray 
data from 2,437 NSCLC patients [7] and 3,951 control 
breast cancers [16]. We examined the impact of gene 
expression levels in primary tumors on the progression 
status in NSCLC patients following surgical treatment. 

Distinct technologies (microarray versus next-generation 
sequencing versus real-time polymerase chain reaction), 
bear distinct limitations and detection bias, such as 
different probe designs and signal detection methods, 
or hybridization bias and thermodynamic limitations for 
DNA microarrays [17]. Hence, transcriptomic analysis 
was independently conducted through DNA microarray 
and NGS analysis. Large data set size, quality selection 
and modular cut-off values were utilized. This led us to 
obtain the key finding of 78.7% concordance between the 
two technologies. Further validation for such analyses was 
provided by confirmation of coherent protein expression 
of the analyzed genes.

Analysis for differential impact on clinical outcome 
then led us to discover sets of genes that differentially 
determine disease outcome in lung LUAD versus LUSC. 
These included growth factor and growth factor receptors, 
transcription factors, cell cytoskeleton and cell-cell 
junction components, together with constituents of the 
intercellular matrix. Overall, 69 genes were identified, 
that acted as prognostic determinants. Remarkably, 
these only had a concordant impact in 8% of LUSC-
diagnostic genes, and in 21% of LUAD-diagnostic genes. 
Several determinants were shown to have a negative 
prognostic impact on LUAD, but a positive one in 
LUSC, such as DSG3, SERPINB13, FOXE1, GRHL3, 
DLX5, TMPRSS11D. High-risk indicators in LUAD, 
were detected as positive prognostic factors in unselected 
NSCLC, e.g. CLND3, TESC. Low-risk indicators in 
LUAD, such as ATP1B3, HPCAL3, COL4A6, SLUG, 
PARD6G, SOX2, CLCA2, STF1, SKP2, were detected 
as negative prognostic factors in unselected NSCLC. 
In several other cases, prognostic impacts were simply 
obscured when LUAD and LUSC were categorized 

Figure 6: LUAD versus LUSC control gene networks. Graphical representation of control gene networks, as identified with 
Cytoscape 3.6.0. Genes are represented as nodes, biological relationships between nodes are represented as lines. Genes overexpressed in 
LUSC (left panel) and in LUAD (right panel) are highlighted in blue; direct interactors are in gray.
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together as NSCLC, and were lost to further prognostic 
analysis.

An additional result of our analysis was to help 
shedding light on driving signaling paths for lung cancer 
development. Keratin intermediate filaments play a 
structural role in cornified epithelia and in epidermis 
development [18]. Notably, all overexpressed keratins, 
i.e. KRT5A, KRT6A, KRT7, KRT14, KRT17, were found 
to play a role as LUAD tumor progression determinants. 
Experimental evidence had previously indicated that 
keratin 19 (CYFRA21-1) had a negative prognostic impact 
on LUAD only [24]. Thus, inappropriate expression of 
keratins appears as a general trait associated to LUAD 
aggressiveness, whether through perturbation of the 
differentiation status of adenocarcinoma cells or by 
regulation of epithelial progenitor/stem cells, as recently 
shown for keratin 14 [18]. The collagen gene COL4A6 
was shown to be a LUAD protective factor, as possibly 
related to its regulatory role on cytokeratin expression and 
epithelial differentiation [25]. COL7A1 acted as a tumor 
progression determinant, possibly through its association 
to cancer stem cells development [26]. SERPINB5/
maspin is a putative tumor suppressors, through influence 
on cell-matrix interactions [27]. However, SERPINB5 
disregulation occurs early during multi-step progression 
models of ductal pancreatic adenocarcinomas, and its 
overexpression associated to dismal prognosis [28], as 
we found in LUAD. As in LUSC, downregulation of 
SERPINB13 expression in head and neck squamous 
cell carcinomas was shown to associate with a poor 
differentiation grade of the tumors, presence of lymph 
node metastases and a decreased disease-free and overall 
survival [29].

Taken together, our findings thus indicate that 
distinct tumor progression pathways are at work in 
LUAD and LUSC NSCLC subtypes, and that specific 
determinants have a distinct impact on patient outcome, 
depending on tumor histology. As such, they should 
be taken into account in current clinical settings. This 
separate classification framework may correspondingly 
help developing and assessing novel diagnostic, prognostic 
and therapeutic procedures for lung cancer.

MATERIALS AND METHODS

Patient case series

For DNA microarray studies, correlated clinical 
and pathological data were obtained from 2,437 patients 
with NSCLC [7] and from 3,951 control breast cancers 
[16] from the Kmplot database (http://www.kmplot.
com). Samples from The Cancer Genome Atlas (TCGA) 
repositories (https://cancergenome.nih.gov/) were parsed 
versus published gene expression data and survival 
information. Additional data were obtained from the 
National Cancer Informatics Program (NCIP) (https://

cbiit.cancer.gov/ncip/ncip-home) and the Gene Expression 
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). For 
analysis of overall survival of NSCLC subgroups, lung 
cancer datasets were analyzed that were selected using 
the keywords “lung”, “cancer”, and related ones, and that 
included microarray gene expression data and correlated 
clinical characteristics including survival. To test for 
randomness, pairwise rank tests were performed for the 
collected clinical data, which included age, sex, smoking 
history, histology, stage, grade, surgery, radiotherapy and 
chemotherapy. For breast cancer, reference databases 
were established using gene expression data and survival 
information from 3,951 patients [16]. The median relapse-
free survival was 6.43 years, 78% patients were estrogen 
receptor positive, and 14% were lymph node positive. In 
all cases, for quantification of impact on outcome for each 
tested parameter, cohorts were divided into two groups, 
i.e. high versus low expressors, by auto selecting the best 
cutoff of gene expression by DNA microarray analysis. 
The analysis was run on selected probe set for each gene, 
as listed in Supplementary Table 1. Patients surviving 
over the selected threshold were censored instead of being 
excluded. In the case of breast cancer the analysis was 
conducted without stratification by molecular subtype and 
therapy [16].

NGS analysis for NSCLC was performed on TCGA 
data from 994 patients (494 LUSC, 500 LUAD). The 
NSCLC dataset included 398 females and 596 males. 
Most patients (N = 600) were still alive at the time of 
data collection. The stage distribution was 510 stage I 
patients, 277 stage II patients, 163 stage III patients, 32 
stage IV patients. Stage information was missing for 12 
patients. NGS analysis forbreast cancer was performed 
on TCGA data from 1075 patients. The dataset included 
1063 females and 12 males. Most patients (N = 923) were 
still alive at the time of data collection. The case series 
included 180 stage I patients, 609 stage II patients, 243 
stage III patients, 20 stage IV patients. Stage information 
was missing for 11 patients.

DNA microarray meta-analysis

DNA microarray data from the NSCLC and breast 
cancer patients were preprocessed and meta-analyzed 
through the KMPlot database (http://www.kmplot.com). 
Only Affymetrix HG-U133A (GPL96) and HG-U133 Plus 
2.0 (GPL570) microarrays were considered, as they share 
22,277 probe sets, to minimize variation in precision, 
different relative scales, and different dynamic ranges. 
Oligonucleotide probes for DNA array analysis were 
chosen for optimal hybridization to Affimetrix chips and 
highest signal-to-noise ratio between experimental groups. 
Final data were obtained through 54,675 Affymetrix probe 
set IDs and 70,632 gene symbols. The raw CEL files were 
MAS5 normalized in the R statistical environment using 
the Affymetrix Bioconductor library. Cox regression 

https://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
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analysis, KM survival plots, hazard ratios (HR) with 95% 
confidence intervals, survival scatter plots and logrank P 
values were computed.

NGS transcriptome profiling

NGS transcriptomes were profiled utilizing 
correlated TCGA data from 994 samples from patients 
with lung cancer (500 LUAD; 494 LUSC) and 1075 
patients with breast cancer. The TCGA RNA-seq data was 
mapped using the Ensembl gene id available from TCGA, 
and the FPKMs (number Fragments Per Kilobase of exon 
per Million reads) for each gene were subsequently used 
for quantification of expression with a detection threshold 
of 1 FPKM.

KM curves were obtained from analysis of 
correlation between mRNA expression level and patient 
survival. Genes with a median expression value lower than 
FPKM 1 were excluded. The prognosis of each group of 
patients was examined by KM survival estimators, and 
survival outcomes were compared by log-rank tests. Genes 
with log rank P values <0.001 in maximally separated KM 
analysis were classified as having prognostic impact.

Immunohistochemistry

Five μm sections from tumor samples were mounted 
on silanized slides. Tissue peroxidase activity was blocked 
with 3% H2O2 for 5 minutes. Slides were quenched with 
0.3% BSA in Tris-buffered saline, at room temperature, 
for 30 min. For Trop-2 staining, antigen retrieval was 
performed by microwave treatment at 750 W for 10 
min using 10 mM sodium citrate buffer pH 6.0 or 1 M 
urea buffer pH 8.0 (Dako), respectively. Slides were 
then incubated at room temperature for 30 min with 
the relevant antibodies. Anti-mouse (K4001, EnVision 
kit, Dako) and anti-goat (K0679, LSAB kit, Dako) 
secondary kits were used for signal amplification, as 
appropriate. Control sections were treated with isotype-
matched immunoglobulins or non-immune serum. Slides 
were washed in Tris-buffered saline-Tween 20, and 
incubated for 10 min in 3,3’-diaminobenzidine (DAKO). 
Counterstaining was performed with hematoxylin. Slides 
were mounted with Immunomount (Shandon). Trop-2 
expression was quantified as percentage of stained cells 
and as intensity of the staining. An IHC score was then 
obtained, ranging from 0 to 12 [30]. Trop-2 expression 
levels were analyzed with a goat anti-Trop-2 polyclonal 
antibody (AF650, R&D Systems). Antigen retrieval was 
performed by microwave treatment at 750 W for 10 
min in 1 M urea buffer (pH 8.0). The LSAB kit (K0679, 
Dako) was used for signal amplification. Trop-2 antigen 
expression was scored positive in presence of a specific 
staining on the tumor cell membrane, and was quantified 
as percentage of stained cells and as intensity of the 
staining. The immunostaining score (H-score) was also 
determined according to the following 5 categories: 0 (0% 

of positive cells), 1 (<10 % of positive cells), 2 (10–50% 
of positive cells), 3 (50–80% of positive cells), 4 (>80% 
of positive cells). The intensity score represented the 
average intensity of the positive cells as follows: 1 (weak 
staining), 2 (moderate staining) and 3 (strong staining). 
The proportion and intensity scores were then multiplied 
to obtain the H-score, which could range from 0 to 12. 
To perform the crosstab analysis (chi-square test) between 
Trop-2 expression and clinicopatholigical features of 
patients, the protein H-score was dichotomize using a cut-
off > 4 [30].

Databases containing high-resolution IHC images 
were analyzed for patterns of expression of differential 
diagnostic and prognostic proteins for lung LUAD 
versus LUSC. The Human Protein Atlas (v. 12, https://
www.proteinatlas.org/) provides spatial distribution and 
expression data from 16,621 proteins/21,984 antibodies 
and corresponding mRNA in normal human tissues and 
different cancer types. The expression profiles of distinctly 
expressed proteins in lung cancer were generated for 
antibody staining parameters, intensity, and fraction of 
positive cells in normal cells and cancers originating from 
different tissues [10].

Gene ontology, networks, and functional impact

Gene Ontology analysis was performed 
using PANTHER 7.2 software. The signaling hubs 
and connectivity networks were obtained using 
NetworkAnalyst. To condense the first-order network to 
its major components, a “minimum interaction network” 
was generated using the “Trim” function as indicated.

Statistical analysis

Statistical analysis was performed using GraphPad 
software (https://www.graphpad.com/). Disease free 
survival (DFS) was defined as the time from surgery to 
tumor recurrence at local or distant sites. Local relapse 
free survival (LRFS) and distant relapse-free survival 
(DRFS) were defined accordingly. KM plots were used 
to illustrate the survival in specified cohorts. Log-rank 
tests assessed equality of survival curves. SPSS software 
Version 15.0 was used throughout these analyses. All 
P-values were two-sided.

Abbreviations
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adenocarcinoma; LUSC: lung squamous cell carcinoma; 
NGS: next-generation sequencing; NSCLC: non–small-
cell lung cancer; SCLC: small-cell lung cancer; TCGA: 
The Cancer Genome Atlas.
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