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AbstrAct:
The recent observation that targeted elimination of a minor subpopulation of 
melanoma cells can lastingly eradicate the tumor lesion provides strong evidence 
that an established melanoma lesion is hierarchically organized and maintained by 
definite subset of cells but not by every random cancer cell. This review discusses 
the concepts of discrete cancer stem cells and of a cellular hierarchy in melanomas, 
the rationale for shifting therapies from broad tumor cell cytotoxicity into selective 
cancer cell elimination strategies and the challenges for future therapeutic concepts.  

IntroductIon

Current regimens in cancer therapy attempt to 
eradicate all the malignant cells in a tumor lesion; this is 
based on the assumption that each cancer cell has equal 
malignant capacities. However, it has long been known 
that tumor lesions display an enormous histological 
heterogeneity; the tumor cell mass of most malignant 
lesions consists of a variety of cancer cells with different 
proliferative capacities, some of which are still present 
in a postmitotic stage. Genetic differences and increasing 
genetic instabilities are thought to drive such phenotypic 
heterogeneity; this results in a variety of different 
cell clones, which populate the tumor cell mass. The 
accumulation of oncogenic and tumor repressor gene 
mutations in an increasing number of cancer cells during 
tumor progression points toward a multi-hit process 
which drives the clonal evolution of malignant cell clones 
by stepwise acquisition of mutations, as formulated by 
Fearon and Vogelstein (1990) [1] for colon cancer. An 
overwhelming body of evidence, which was collected in 
the following years, strongly supports the clonal evolution 
model in tumor progression. Recent advances in global 
genome sequencing confirmed the presence of genetic 
heterogeneity in primary tumors and identified driver 
mutations in metastasis in addition to common mutations 
[2].

A variable but low number of cells isolated from 
solid tumor lesions can initiate tumors of the same 
histological heterogeneity as the parental tumor. Data 

based on xeno-transplantation combined with clinical 
observations fueled the cancer stem cell (CSC) model with 
the central paradigm that tumor initiation and progression 
is driven by a minor subset of discrete CSCs which have 
the capacity to renew themselves and to establish tumors 
upon transplantation, to stay quiescent (“dormant”) 
for long time, to be more resistant to chemotherapy 
and radiation, and to drift to distant sites of the body to 
initiate metastases. In this context, the CSC paradigm 
describes several phenomena in tumor biology which 
have been clinically observed but are poorly understood. 
For instance, metastatic relapse of melanoma can occur 
more than a decade after curative surgical treatment of 
the primary lesion; this phenomenon is thought to be due 
to the same cancer-originating cell, which drives cancer 
progression and relapse [3]. 

Recent data from our group [4] provide strong 
evidence that a minor subset of melanoma cells drives 
melanoma progression. Targeting CD20-positive 
melanoma cells, which constitute as little as 0.1 - 2% of 
the cancer cell population, can completely and lastingly 
eradicate the disease in mice without the need to target 
the tumor cell mass. In this review we discuss some 
consequences and challenges for the understanding of 
melanoma biology and for the future design of therapeutic 
regimes. 
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EvIdEncE for thE cAncEr stEm 
cEll pArAdIgm

Observations by Pierce and co-workers that 
teratomas contain pluripotent stem cells led to the early 
definition of CSCs [5, 6]. The concept was subsequently 
sustained by deciphering the hierarchical organization 
in hematological malignancies. In their landmark paper 
Bonnet and Dick (1997) identified CSCs in most types 
of acute myeloid leukemia by xeno-transplantation and 
calculated their frequency to be approximately 10-6 [7, 

8]. Subsequently, tumor-inducing cells were identified 
in solid tumors including the mammary carcinoma. Cells 
with CD44+ CD24-/low phenotype induced tumors upon 
transplantation, whereas the majority of cancer cells 
from the same lesion did not [9]. The induced tumors 
displayed the same histology as the parental tumor and 
harbored tumorigenic cells, which again induced tumors 
upon serial transplantation. Since no clear morphological 
or phenotypical genotype can be attributed to them, 
CSCs are functionally identified by their ability to induce 
tumors upon transplantation into mice with different 
grades in immune deficiency by limiting dilution, most 
rigorously by transplantation of a single cell (for review 
[10, 11]). The induction of progressively growing tumors 
which recapitulates the parental tumor in its cellular 
heterogeneity reflects self-renewal of CSCs and their 
ability to differentiate. Long-term self-renewal has been 
confirmed by serial transplantation of re-isolated CSCs, 
which gives rise to secondary tumors. However, the 
conclusions drawn thereon are based on some premises 
which led to controversial conclusions in the definition of 
CSCs in general and in melanomas in particular [12-16].

One reason for the controversial discussion is 
the existence of major differences in the experimental 
context. At least the assay duration, the degree of immune 
deficiency, and the environment into which melanoma 
cells are transplanted are critical parameters, which 
substantially impact on the outcome of the assay. A recent 
study by Weissman and colleagues calculated a frequency 
of tumorigenic cells in any melanoma of about 1/2000 
cells [17]. Although this study indicates that tumor-
initiating potential is rare in melanomas, testing under 
modified conditions revealed that approximately 1 out 
of 6 (1/2 – 1/15) melanoma cells is capable of inducing 
tumors [18]. In line with that, a high incidence of tumor 
formation upon transplantation of single cells from BRAF 
mutated, PTEN- melanomas was reported [19].

The use of the transplantation assay to identify 
cancer stem cells has substantial limitations. First, human 
cells have to overcome species barriers upon transfer 
into the murine environment. At least for some solid 
cancers, mouse tumor cells accordingly showed improved 
engraftment when transplanted into fully compatible 
hosts [20-23], whereas this was not the case for murine 
leukemias [24-26]. Second, transplanted cells have to 
reconstruct their own niche, which will be different 
from the particular environment in an existing tumor 
from which they were isolated. As a consequence, the 
transplanted cell is more highly challenged for functional 
flexibility upon transplantation than the same cell resident 
in the tumor tissue. Therefore, the transplantation assay 
does not address whether or not an established melanoma 
is organized in a functional hierarchy with different cancer 
cell subsets. Not every cell exhibiting tumorigenic potential 
in the transplantation assay will contribute to melanoma 
progression. Once the tumor tissue is established, the 

figure 1: the hierarchical and the transplantation 
model may reflect different stages in melanoma 
development. Transplantation assays indicate that isolated 
melanoma cells with different phenotypes can initiate by 
asymmetric cell divisions new tumor lesions when transplanted 
under appropriate conditions. This provides evidence for a 
variable, potentially high number of cancer cells with tumor-
originating capabilities. Once established, targeted elimination of 
a definite, non-random minor subset of melanoma cells results in 
melanoma eradication, which provides evidence for a functional 
hierarchy with a “master cell” required for maintaining the 
melanoma lesion. Both models may reflect different stages in 
melanoma development. Although the mass of cancer cells in an 
established tumor lesion does not provide melanoma-maintaining 
functions, functional plasticity enables individual cells to exhibit 
melanoma-originating capabilities when isolated from the tumor 
tissue and seeded under limiting dilution conditions. Once the 
tumor tissue has become re-established, a few “master cells” take 
over to maintain tumor integrity and to fuel progression.
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tumor-initiating potential may be repressed by intrinsic 
cellular mechanisms due to clonal evolution processes 
or epigenetic changes; extrinsic mechanisms such as 
metabolic insufficiencies or low oxygen may additionally 
contribute to this. Recent data from our group support the 
assumption that, once established, melanoma maintenance 
depends on only a minority of melanoma cells. The latter 
has to be eliminated in order to eradicate an established 
tumor lesion [4]. 

A mInor subsEt of mElAnomA 
cElls sustAIns tumor pErsIstEncE 
And growth

To date no direct evidence is available to show whether 
maintenance and long-term progression of established 
solid tumors is driven by all cancer cells or by a subset of 
them. Using in vivo targeting of defined tumor cell subsets, 
we recently demonstrated that selective elimination of a 
definite, minor cancer cell subpopulation is particularly 
effective in eradicating established melanoma lesions 
irrespective of the tumor cell mass [4]. Human melanoma 
lesions which recapitulate the histological heterogeneity 
of the parental tumor were established in immunodeficient 
mice by means of transplantation of unsorted biopsy cells. 
Once the tumor was established, i.e. growing progressively 
and connected to the host vasculature, pre-defined cancer 
cell subsets in the tumor tissue were specifically targeted 
by adoptive transfer of cytotoxic T cells, which were 
redirected in an antigen-restricted manner by a chimeric 
antigen receptor (CAR). The CAR is composed of an 
extracellular, antibody-derived binding domain and an 
intracellular signaling domain derived from the T cell 
receptor complex [27]. CAR-engineered T cells are thus 
antibody-redirected and MHC-independently activated 
to target cells which express the cognate antigen on 
the cell surface. Engineering with a CAR specific for 
high-molecular weight, melanoma-associated antigen 
(HMW-MAA), also known as melanoma chondroitin 
sulfate proteoglycan (MCSP), redirects cytolytic T cells 
to selectively eliminate HMW-MAA+ cells; T cells with 
a melanotransferrin (mtf) specific CAR eliminate mtf+ 
cells. Targeted elimination of melanoma cells with mtf 
expression, which constitute nearly all malignant cells in 
a melanoma lesion, eradicates the tumor lesion in immune 
deficient mice. However, the same effect was induced by 
targeted eradication of HMW-MAA+ cells, which make 
up about 40% of the malignant cells in the lesion. It is 
noteworthy that Melanoma lesions, were also eradicated 
by targeted elimination of a 0.1 - 2% subset of cancer cells 
which co-express CD20 together with HMW-MAA; no 
relapse occurred in more than 36 weeks. The unexpected 
observation is that elimination of the minor population of 
CD20+ cancer cells is as effective in tumor eradication as 
targeting the entirety of the cancer cells. In this context, 
it is of substantial relevance that melanoma-sustaining 

cells were identified without isolation from tumor tissues 
and transplantation into a xeno-environment. The effect 
is specifically associated with the CD20+ melanoma cell 
subset since elimination of any random 10% cancer cells 
from the established tumor lesion is not effective. A caveat 
is that obviously some melanomas, in our cohort 1 out 
of 5 patients, do not harbor CD20+ melanoma cells. In 
those melanoma lesions the cancer cell subset may not 
exist or may lack CD20. However, CD20 itself does not 
seem to be causally involved in the induction of tumor-
sustaining capacities since transgenic expression of CD20 
in a random, CD20-negative melanoma cell population 
and subsequent targeted elimination of those cells from an 
established melanoma did not eradicate the tumor lesion. 
Taken together the data provide the first direct evidence 
that an established melanoma lesion is hierarchically 
organized, i.e. harboring a minor subset of cancer 
cells which is crucial in maintaining malignant tumor 
growth. However, this observation raises the following 
implications with substantial impact for the understanding 
of melanoma biology.

1. do cd20+ melanoma cells exhibit capacities of 
cancer stem cells?

The observation that continuous melanoma growth 
requires the presence of a definite minor subset of cells 
implies that those cells are capable of initiating new 
melanoma lesions when transplanted into an immune-
deficient host. Transplantation of enriched HMW-
MAA+ CD20+ melanoma cells into the immunodeficient 
mouse confirmed their tumor-inducing capabilities. 
Induced melanomas exhibited the same histological 
morphology with low numbers of CD20+ cells as the 
parental tumor; this is conserved in serial transplantation. 
CD20+ melanoma cells thereby exhibit cancer stem cell 
capabilitis. Similarly, Herlyn’s group previously reported 
a tumorigenic potential in isolated CD20+ melanoma cells 
which were grown in spheroids in vitro [28]. These cells 
express melanoma-associated markers chondroitin sulfate 
proteoglycan (CSPG), β3 integrin and MCAM as well 
as stem cell markers including CD133. These cells can 
differentiate under appropriate conditions in vitro into 
multiple cell lineages and exhibit self-renewal capacities 
upon serial transplantation in vivo recapitulating the 
cellular heterogeneity of the parental tumor. The data 
are insufficient to determine whether these cells are the 
only cells capable for renewal and tumor induction in 
melanoma; other subsets of cells with the same stem cell 
capability might possibly exist simultaneously in the same 
tumor lesion.
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2. do cd20+ melanoma cells represent a stable 
melanoma cell lineage or a transient phenotype 
associated with cancer-maintaining capabilities? 

Markers, and combinations of markers, which are 
used to isolate CSCs are currently chosen with respect to 
their heterogeneous expression in tumor tissues and not 
due to insight into a functional hierarchy of stem cells, for 
instance, CD24 and CD44 in breast cancer [9] and pancreas 
carcinoma [29], CD90 on hepatocellular carcinoma [30], 
CD133 in colon, lung, brain tumors [31-35], and EpCam 
in colorectal and pancreatic cancer [29, 36]. Expression 
of CD271 [17], ABCB5 [37], CD133 [38], and CD20 
[28] by melanoma CSCs has been reported. However, the 
value of these and other markers in identifying CSCs has 
been a matter of controversy since Quintana et al. (2010) 
[39] showed a remarkable phenotypical plasticity of those 
cells, i.e. sorted marker-positive and marker-negative cells 
are similarly able to reconstitute a tumor with the same 
pattern of marker expression as the parental tumor. In 
particular, tumors which were initiated either by isolated 
CD133+ or CD133- melanoma cells displayed the same 
heterogenous pattern in CD133 expression as the parental 
tumor [16, 18]. Moreover, melanoma cells expressing 
the H3K4 demethylase JARID1B, which are more 
tumorigenic than cells lacking JARID1B, can produce 
cells which lack JARID1B; the latter, however, can also 
produce JARID1B+ cells [40]. Similar observations were 
reported by Sharma et al. (2010) [41], i.e. that individual 
cells can transiently acquire or loose drug resistance 
mediated by JARID1A. In this context, the expression 
of certain markers by melanoma inducing cells may not 
be heritably fixed but rather determined as a result of a 
number of parameters provided by the environment. 

Similarly, the CD20+ phenotype of an individual 
melanoma cell in an established tumor lesion may not be 
stable. Evidence for this is provided by tumors induced 
by transplantation of isolated CD20+ melanoma cells. 
Such tumors display a heterogeneous phenotype with 
the majority of CD20- and a small subset of CD20+ 
melanoma cells [4, 28]. The underlying mechanism may 
be phenotype-switching associated with asymmetric cell 
division. The ability to switch phenotypes implies that 
most cells in the tumor tissue will have the potential 
to adopt a stem cell-like phenotype, independently of 
whether cells exhibit a more differentiated postmitotic 
or a more proliferative phenotype at a given moment 
(for review [42]). Assuming that melanoma-maintaining 
cells display their phenotype and functional capabilities 
in a reversible fashion, eliminating cells in the functional 
stage of tumor maintenance would only be sufficient to 
eradicate the established melanoma lesion if reversion to 
the stage of maintenance does not occur frequently. 

3. How frequent are cells which maintain tumor 
progression?

Based on the transplantation assay, the estimated 
frequency of CSCs is commonly believed to be rare. 
However, this may be greatly underestimated; this became 
obvious when one out of ten murine leukemia cells 
induced leukemia in compatible hosts [43] and one out 
of four melanoma cells induced melanomas [18]. While 
transplantation assays score for self-renewal and tumor 
re-formation in a heterologous host, melanoma-sustaining 
cells were identified by targeted elimination of defined 
subsets of cancer cells [4]. The frequency of targeted 
CD20+ melanoma cells in tumor tissues was about 2% 
or less, whereas approximately 104 enriched HMW-
MAA+ CD20+ cells were required to induce melanomas 
upon xeno-transplantation. However, CD20-negative 
melanoma and other cancer types may harbor cancer-
maintaining cells in different frequencies. In concurrence 
with others [11], we assume that the calculated frequency 
of tumor inducing cells as estimated by the limiting 
dilution transplantation assay is less relevant in the 
context of melanoma-maintaining cells in an established 
tumor lesion. 

4. Are cd20+ melanoma cells good targets for 
therapy?

The data strongly imply that CD20+ melanoma cells 
are appropriate targets for therapy. However, therapeutic 
strategies have to deal with the particular properties of 
those cells and of cancer stem cells in general. Depending 
on their position in a functional hierarchy, targeting cancer 
cell subsets will have different therapeutic effects. When 
targeting a small subset of cancer cells, therapy may 
initially be accompanied by a slow increase in tumor 
progression until a decrease in tumor cell mass becomes 
obvious. Mathematical modeling revealed that strategies 
which eliminate tumor repopulating cells will be more 
successful than increasing the death rate or decreasing 
the production of mature tumor cells; the latter will not 
succeed in eradicating progressing tumor lesions [44]. 
Based on these models, debulking tumor mass combined 
with targeted elimination of CD20+ cells is assumed to 
eradicate tumor lesions more rapidly while avoiding the 
risk of relapse. 

To specifically eliminate CD20+ melanoma cells, 
Schmidt and colleagues (2011) [4] made use of genetically 
engineered cytotoxic T cells, which are redirected by a 
chimeric antigen receptor recognizing defined tumor cell 
subsets in a MHC-independent fashion. Alternatively, 
redirecting T cells by a recombinant T cell receptor in a 
MHC-dependent manner will be feasible as soon as tumor 
cells properly present the target antigen. Compared to 
therapeutic drugs, redirected T cells have the advantage 
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that they actively penetrate tissues and scan cells for 
specific ligands. Once activated, T cells lyse the cognate 
cell, secrete a spectrum of pro-inflammatory cytokines and 
proliferate, which in total results in a forced and prolonged 
anti-tumor attack. Without contact to the antigen the T cell 
response ceases, and the majority of T cells undergoes 
apoptosis. Although some T cells are assumed to persist 
in the long-term, thus providing CAR-defined antigen-
specific memory, definite proof is still lacking. 

Adoptive immunotherapy by engineered T cell is 
still being explored in phase I trials, whereas therapeutic 
antibodies have been in clinical use for the treatment of 
malignant diseases for nearly a decade. In contrast to 
chemotherapy, antibody treatment has the advantage that 
it is not neutralized by a drug transporter or the dormant 
stage of the target cell. However, successful treatment of 
melanomas with anti-CD20 antibodies such as Rituxan 
rituximab or Arzerra ofatumumab depends on several pre-
requisites: sensitivity of CD20+ melanoma cells to those 
antibodies, which is assumed on the basis of B lymphoma 
cell killing but not yet been demonstrated, efficient 
penetration into solid tumor tissues to target the few 
melanoma cells, and therapeutic antibody levels over time, 
in particular when phenotype shifting plays a major role. 
When systemically applied, the concomitant elimination 
of B lymphocytes and the drop in immunoglobulin levels 
has to be clinically addressed. An explorative phase I 
melanoma study applying anti-CD20 antibody rituximab 
as adjuvant for low-dose IL-2 has been reported [45]; 
however, the study did not determine any benefit in anti-
tumor response. Currently, a phase I/II trial using anti-
CD20 antibody in the treatment of metastatic melanoma 
is in planning [46]. As alternative to the therapeutic anti-
CD20 antibody, anti-CD20 radio-immunoconjugates 
including ibritumomab, tiuxetan and tositumomab are also 
worth testing. Recombinant single-chain antibodies may 
be advantageous since they penetrate solid tissues more 
efficiently than full length antibodies. When combined 
with a T-cell-engaging domain, those recombinant bi-
specific antibodies are extremely effective in inducing an 
anti-tumor cell response in circulation and solid tissues 
[47]. 

CSCs in long-term proliferative quiescence 
(“dormancy”) escape anti-proliferative chemotherapy, 
which allows tumor relapse even after decades. This was 
observed in the treatment of CML with imatinib; even 
complete responses to treatment frequently relapse after 
discontinuation of treatment. Successful therapy by anti-
proliferative drugs therefore has to induce cell cycle entry 
of CSCs thus making them more sensitive, as recently 
shown for AML [48]. Moreover, the therapeutic effect 
of anti-proliferative drugs will be counteracted by the 
pronounced expression of the chemo-resistance mediator 
ABCB5 in melanoma CSCs [37]. In general, CSCs 
are thought to be more resistant to chemotherapy and 
radiation than the bulk of the tumor cells. This observation 

is supported by pre-clinical data on CD44+CD24low 
mammary carcinoma CSCs and clinical observations that 
CSCs remained present and increased in relative numbers 
in neo-adjuvant chemotherapy, whereas cells without 
CSC markers regressed [49, 50]. In the context of CD20+ 
melanoma maintaining cells, it will be of particular 
interest to determine whether the frequency of those 
cells during chemotherapy correlates with the clinical 
outcome irrespective of the tumor cell mass. Furthermore, 
long-term proliferative quiescence of CD20+ melanoma 
cells may counteract clonal evolution of genetic and 
epigenetic modifications, which continuously occurs and 
affects different tumor cell subsets in established lesions 
[51]. Genetic changes may drive resistance to therapy 
and counteract long-term success; this becomes obvious 
when mutant BRAF cells change from sensitive to more 
malignant cells upon treatment with BRAF inhibitors 
[52]. However, the question of whether or not CD20+ 
melanoma cells undergo substantial clonal evolution 
during tumor progression needs to be addressed. 

If functional and phenotypic plasticity occurs in 
substantial frequencies in CD20+ melanoma cells, the 
therapeutic targeting of those cells will require an ongoing 
process and will only be successful in small tumor lesions 
where the stochastic frequency of newly reverted cells 
is low. If, after initial treatment, tumor growth relapses 
in any surviving melanoma cell due to its functional 
plasticity, eradication of tumor lesions will require the 
elimination of all melanoma cells and in the long-term will 
not be possible by targeting of any tumor cell subset at a 
given time. Conversely, if melanoma growth depends on a 
fixed tumor cell subpopulation, their specific elimination 
will effectively eradicate tumor lesions without targeting 
the bulk of the tumor cells. In their therapeutic approach 
Schmidt et al. (2011) [4] treated melanoma lesions 
of about 15 - 20 mm3 in volume, which are fairly well 
established, have their own stroma and are vascularized, 
but which represent smaller tumor volumes than human 
bulk metastases. Moreover, Schmidt and colleagues took 
advantage of the particular capability of cytolytic T cells 
to patrol as a guardian through tissues and to eliminate 
those cells whenever they occur. Targeting the same cells 
by therapeutic antibodies would require maintenance 
of therapeutic levels in the long-term; however, this is 
clinically feasible. 

conclusIons

Strong evidence for a functional hierarchy in a 
melanoma lesion is provided by tumor eradication by 
means of targeted elimination of the minor subset of 
CD20+ melanoma cells. Although isolated individual 
cancer cells can exhibit “stem-like” capacities under 
limiting dilution conditions, rare melanoma cells seem 
to trigger a hierarchy in an established melanoma lesion 
by maintaining tumor integrity and progression via 
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processes which are currently unknown. Functional and 
phenotypic plasticity as well as accumulating genetic 
lesions may result in the situation that the melanoma-
maintaining property is not genetically fixed to a certain 
cell; other master cells which fuel melanoma integrity and 
progression may exist, in particular in those cases which 
lack CD20+ melanoma cells. 

At least three substantial consequences for prognosis 
and therapy need to be addressed:

First, whether functional plasticity counteracts the 
therapeutic efficacy of targeted elimination of CD20+ 
melanoma cells in the clinical situation. 

Second, whether the frequency of CD20+ melanoma 
cells serves as a surrogate for therapeutic efficacy and is 
of prognostic value.

Third, whether “dormant” CD20+ melanoma cells 
initiate melanoma relapse even after decades.
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