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ABSTRACT

Endoplasmic reticulum (ER) stress can be activated by various pathological and 
physiological conditions including the unfolded protein response (UPR) to restore 
homeostasis. The UPR signaling pathways initiated by double-stranded RNA-activated 
protein kinase (PKR) like ER kinase (PERK), inositol requiring enzyme 1 α (IRE1α), and 
activating transcription factor 6 (ATF6) are vital for tumor growth, aggressiveness, 
microenvironment remodeling, and resistance to cancer therapeutics. This review 
focuses on the role of ER stress and activity of UPR signaling pathways involved in 
tumor formation and uncontrolled cell proliferation during various cancers and viral 
malignancies.
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INTRODUCTION

Endoplasmic reticulum (ER) is the cell organelle 
that maintains cellular homeostasis and participates 
in lipid synthesis, protein folding, translocation, and 
post-translational modifications [1, 2]. Various stress 
factors like hypoxia, starvation, and change in pH, 
calcium depletion, and viral infection can disturb the 
ER environment (Figure 1). This disrupts the process 
of proper protein folding within the ER, finally leading 
to the accumulation of misfolded or unfolded proteins 
causing ER stress. It further activates “the unfolded 
protein response” (UPR), a cellular homeostasis response 
connecting the ER to the nucleus to restore cellular 
equilibrium [3, 4]. In order to repair ER-associated 
degradation (ERAD), UPR can activate apoptosis or 
degradation of unfolded or misfolded proteins, which 
cannot enter into the secretory pathway (Figure 1). Cancer 
cells and viruses have their own adaptive mechanisms to 
control ER stress-induced apoptosis, which allows them 
to grow aggressively. Here, we discuss various factors 
present in the tumor microenvironment of cancer cells, 
virus infected host cell responses such as UPR and ER 
stress, and their therapeutic repercussions.

UPR signal pathways

In response to cellular stress, a programmed 
signaling cascade gets activated which is known as the 
unfolded protein response or UPR. It is mediated by 
three highly specific signaling protein molecules named 
activating transcription factor 6 (ATF6), double-stranded 
RNA-activated protein kinase (PKR)-like ER kinase 
(PERK), and inositol requiring enzyme 1 (IRE1) [5]. UPR 
is regulated by master regulator protein, Glucose-regulated 
protein GRP78 or Binding immunoglobulin Protein (BiP/
GRP78) and GRP94 [5]. Under normal conditions, the 
ER luminal domain of these transmembrane molecules 
including ATF6, PERK, and IRE1 is bound to the 
chaperone protein BiP/GRP78, which maintains them in 
an inactive state [5]. Under stressful conditions (Figure 2), 
when misfolded or unfolded proteins accumulate in the ER 
lumen, BiP/GRP78 dissociates from these transmembrane 
sensors and activates UPR signal pathways and 
downstream target genes including ATF4, CHOP, ER 
degradation-enhancing alpha-mannosidase-like protein 
1 (EDEM1), growth arrest- and DNA damage-inducible 
gene (GADD) 34, BiP/GRP78, GRP94, protein kinase 
inhibitor of 58 kDa (p58IPK), and PDI. Each of these 
pathways uses a different mechanism such as PERK 

                          Review



Oncotarget31921www.oncotarget.com

inhibits translation, ATF6 regulates proteolysis, and IRE1 
acts by degrading ER bound mRNAs [6]. 

Upon activation by ER stress, PKR-like ER Kinase 
PERK, oligomerizes and autophosphorylates its free 
luminal domain. The cytosolic domain phosphorylates 
the α subunit of translational initiation factor eIF2, and 
subsequently inhibits the process of translation. Thus PERK 
helps reduce the burden of unfolded protein. However, 
under limiting eIF2, translation of transcription factor ATF4 
is induced. ATF4 is associated with two target genes: 1) C/
EBP homologous protein (CHOP) and 2) growth arrest 
and DNA damage-inducible protein (GADD34). CHOP is 
a transcription factor that controls genes associated with 
apoptotic pathways. Thus the phosphorylation of eIF2α 
selects either a protective or an apoptotic role for PERK 
and is epitomized by the effects of alteration of its related 
phosphatases. GADD34; (a PERK inducible regulatory 
subunit of the protein phosphatase PP1c) dephosphorylates 
eIF2α and thus reverses the effect of PERK [7]. Deletion 
of GADD34 or inhibition of the GADD34-PP1c complex 
formation may be protective for cells (Figure 2).

IRE1 plays the dual role of a transmembrane kinase 
and endoribonuclease that participates in mRNA splicing to 
transmit the UPR signal. IRE1 undergoes conformational 
changes and oligomerizes in the ER membrane. Upon 
activation, IRE1 cleaves the uXBP1 mRNA encoding 
XBP1 (X-box binding protein 1), at two specific positions, 
excising an intron and finally giving rise to a spliced mRNA 
that is translated to the active form of XBP1 (Figure 2). 
XBP1 is a transcription factor that targets genes encoding 
ER chaperones, oxidoreductases, and ERAD pathway 
components. XBP1s plays a special role in regulating 
lipid biosynthetic enzymes, ERAD components as well as 
elements involved in active secretory pathways (Figure 2) 
[8]. Mammals have two IRE1 paralogues as IRE1α 
and IRE1β [9]. IRE1α is ubiquitously expressed and is 
required for XBP1 mRNA splicing [10]. IRE1β expression 
is restricted to the intestinal epithelium, and elimination 
of IRE1β in mice leads to increased signs of ER stress, 
increased JNK (c-Jun N-terminal kinase) signaling, and the 
mice are highly susceptible to experimental colitis induced 
by dextran sodium sulfate [11].

Figure 1: Players of ER stress: Cellular stress such as metabolite deprivation, hypoxia, cancer or viral infection 
causes an increased load of misfolded protein in the ER thereby triggering a stress response. Either genes coupled with ER 
associated protein degradation get activated or translation of protein gets inhibited, and the cell dies. 
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ATF6 is a membrane-bound transcription factor 
localized to the ER. ATF6 serves as both a sensor of ER 
stress and a transcriptional activator of UPR target genes 
[12]. Upon being activated by unfolded or misfolded 
proteins, ATF6 gets pinched off the ER and delivers the 
misfolded protein to the Golgi apparatus [13] where two 
proteases, Site-1 protease (S1P) and Site-2 protease (S2P) 

cleave [14, 15] and release N-terminal, ATF6 (N), that 
travels to the nucleus to activate UPR target genes. Among 
these targets are major ER-resident proteins involved in 
protein folding such as BiP/GRP78 and disulfide isomerase. 
These chaperones participate in refolding and relieving 
ER stress. The GRP78 promoter contains three ER stress 
response elements (ERSE) located upstream of the TATA 

Figure 2: The unfolded protein response signaling cascade: IRE1, ATF6, and PERK serve as a UPR sensor under ER 
stress. (A) In normal condition, BiP/GRP78 remains bound to these UPR sensors. But under (B) stress condition BiP/GRP78 dissociates 
from the UPR sensors thereby activating these signal transducers. Activated IRE1 facilitates splicing of XBP1 mRNA and spliced protein 
translocates to the nucleus to regulate ERAD. Likewise, cleaved transcription factor 6 (ATF6) induces the expression of ER chaperones 
and ERAD associated molecules. The activated PERK attenuates protein synthesis by phosphorylation of eIF2α, thereby enabling the 
translation of eIF2α-activating transcription factor-4 (ATF4), which translocates to the nucleus and induces the transcription of numerous 
genes.
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element [16]. ATF6 is a member of the leucine zipper 
protein family that can constitutively induce the promoter of 
glucoseregulated protein genes through activation of ERSE 
[17]. ATF6 is also known to induce XBP1 expression and 
increase the sum of XBP1u and XBP1s [18]. All these three 
branches of UPR have opposing signals and their relative 
induction may shift the balance between cytoprotection and 
apoptosis. The complexity of regulation is further increased 
because the very components of UPR, including IRE1, 
XBP1, PERK, and ATF6, are themselves transcriptionally 
controlled by UPR [19].

Tumor microenvironment

The tumor microenvironment is the cellular 
surroundings of the tumor, which includes both stromal 
and non-stromal components. Stromal cells secrete 
cytokines and growth factors and interact with tumor 
cells in reciprocal manner. Tumor cells affect stromal 
cell phenotype by modifying microenvironment. Stromal 
cells support tumor cell growth by promoting invasion 
and metastasis. The stromal components in tumor 
microenvironment include endothelial cells, immune cells, 
inflammatory cells, lymphocytes, and cancer associated 
fibroblasts (CAFs), the extracellular matrix (ECM) and 
signaling molecules (Table 1). Activated CAFs in the 
tumor microenvironment not only helps tumor cells 
proliferate by supplying nutrition but also secretes various 
growth factors (hepatocyte growth factor- HGF, fibroblast 
growth factor- FGF) and cytokines. CAF releases a large 
number of mesenchymal transducing soluble factors to 
remodel the ECM [20]. Endothelial cells lining tumor 
blood vessels produce pro-angiogenic factors and also 
promote migration, metastasis, and evade anoikis [21, 22]. 
Immune cells in the tumor environment may either 
activate CD4 helper and CD8 cytotoxic T lymphocytes 
in an MHC I and MHC II dependent manner or promote 
tumor growth in the presence of infiltrating leukocytes. As 
stated previously in this section, the UPR not only affects 
the processes of angiogenesis, inflammation and host 
immune response but also mediates the signaling between 
tumor and non-tumor cells [22]. Cancer cells communicate 
their message into the tumor vicinity through a paracrine 
effect on myeloid cells using small molecules, ions, 
proteins, and nucleic acids. These myeloid infiltrating cells 
become immunologically tolerant and start secreting many 
signaling molecules such as growth factors, cytokines, 
and exosomes. UPR enriches tumor fitness by being 
transmitted from cancer cells to the cells of the tumor 
microenvironment. This transmissible ER stress (TERS) 
has multiple effects on the recipient cells in vitro and in 
vivo [23]. TERS upregulates tumorigenic inflammatory 
cytokines  (IL-6, IL-8, IL-23), inflammatory metabolite 
PGE2 and decrease T cell response [24]. TERS control 
immune cell development, function, and survival in both 
the pathological and physiological conditions.

The tumor microenvironment is comprised of 
hyperactive pro-oncogenic genes and mutant tumor 
suppressor genes that are responsible for the highly 
proliferative and metabolically demanding cellular 
environment [25]. Due to the metabolically demanding 
stress environment, tumor cells thrive in conditions of 
hypoxia, glucose deprivation, lactic acidosis, oxidative 
stress, alteration in nitrogen species, lipid peroxidation, 
and decreased amino acid supplies [25, 26]. Premalignant 
cells have the added advantage of gene mutations, which 
curb UPR induced apoptosis or senescence promoting 
survival and growth [27]. All these changes due to 
intrinsic and extrinsic factors of the microenvironment 
contribute to the UPR activation induced by ER stressors. 
Unlike normal cells, cancer cells demonstrate constitutive 
activation of the UPR system (IRE1α-XBP1) under stress 
conditions [28, 29]. IRE1α mutants lose their regulated 
IRE1-dependent decay of mRNA (RIDD) function and 
show increased cell survival [30].

Hypoxia

The tumor microenvironment has poor 
microcirculation, which causes hypoxia in the cell. 
Hypoxia leads to UPR activation, which eventually initiates 
another cycle of cell proliferation and subsequent hypoxia 
in tumor cells [31]. Although hypoxia is not ideal for 
general protein translation but in the case of malignancy, 
hypoxia induces the upregulation of hypoxia-inducible 
factor 1 alpha (HIF1-α), which stimulates angiogenesis 
and activation of metastatic genes [32]. Hypoxia triggers 
PERK signaling in mammalian cell lines [33]. The 
UPR activation mediated by downstream effectors of 
eIF2α phosphorylation and activated IRE1 develops 
hypoxia tolerance [34]. Activation of hypoxic-modulated 
molecular responses depends on cellular oxygen levels 
and the duration of hypoxia. UPR mediated induction of 
endoplasmic reticulum oxidoreductin 1 (ERO1) [35, 36] 
leads to generation of reactive oxygen species (ROS) in 
mitochondria [37] and ER during hypoxia.

Reactive oxygen species (ROS) and 
inflammatory mediators

ROS in the tumor microenvironment promotes 
genetic and epigenetic alterations favorable for tumor 
growth and progression [38]. ROS can target ER resident 
proteins and ER based calcium (Ca2+) channels leading 
to ER stress signaling.  Increased cytosolic calcium and 
calcium ingress in mitochondria from ER stimulates 
further ROS production [39]. This process activates PERK 
mediated Nrf2 induction which promotes cancer cell 
proliferation [40]. Proinflammatory cytokines like IL6 
and tumor necrosis factor α (TNFα) present in the tumor 
microenvironment further add to the ER stress induced UPR 
activation. All three branches of the UPR pathway activate 
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NF-kB through different mechanisms. PERK-eIF2α signals 
translational arrest and increased NF-kB/IkB ratio, leading 
to NF-kB nuclear translocation [41, 42]. ATF6α activates 
NF-kB through AKT phosphorylation [43, 44]. IRE1α–TNF 
receptor-associated factor 2 (TRAF2) complexes can bind 
to NF-kB leading to IkB phosphorylation and degradation, 
and nuclear translocation of NF-kB [45]. The TRAF2-
IRE1 complex initiates proapoptotic signaling by activating 
Apoptosis Signal Regulated Kinase (ASK1), which 
subsequently transmits the death signal to c-Jun N-terminal 
kinase (JNK). JNK phosphorylates Bcl2 and abrogates its 
anti-apoptotic activity [46].

Various inflammatory mediators, such as 
eicosanoids including prostaglandins and leukotrienes 
have also been associated with ER stress and UPR. An 
in vivo study carried out in a murine model showed that 
insulin-sensitizing effects of 5-LO siRNA or zileuton is 
due to LTB4 downregulation and AMPK activation [47]. 
LTB4 was identified as the critical player in the ER stress 
pathway, reactive oxygen species (ROS) generation and 
inflammation [47]. Glucose deprivation in colorectal 
cancer cells increased cycloxygenase-2; COX-2 and 
reduced 15-hydroxyprostaglandin dehydrogenase; 15-
PGDH expression and thus upregulated extracellular 
inflammatory prostaglandin PGE2, which promoted 
cancer cell survival.  These studies emphasized the role of 
inflammatory mediator PGE2 as mediator of cell survival 
during adaptation to the tumor microenvironment, which 
can lead to novel therapeutic strategies [48]. Another 
eicosanoid, leukotriene C4 (LTC4), has also been reported 
as a major ER stress mediator that is also observed in 
chemotherapy triggered oxidative stress, DNA damage 
and dsDNA breaks [49]. 

Nutrient deficiency and angiogenesis

Tumor cells grow in a glucose deficient 
environment, which causes accumulation of misfolded 
protein within the ER affecting calcium concentration 
that activates PERK [50]. Tumor cells switch to a high 
rate of aerobic glycolysis producing lactic acid [51] 
and activate XBP1 and PERK/ATF4-mediated UPR 
components. BiP/GRP78 is also upregulated in a glucose 
deficient tumor microenvironment [52]. Amino acid 
deprivation induces eIF2α phosphorylation. Various 
growth factors like epidermal growth factor (EGF), 
transforming growth factor-α (TGF-α) released within 
the tumor microenvironment activates UPR. Wang and 
colleagues demonstrated that nutrient deficiency activates 
UPR in an IRE1α/XBP-1, PERK-ATF4, and ATF6α 
dependent manner and stimulates inflammatory cytokine 
(IL 6), fibroblast growth factor-2 (FGF-2), and vascular 
endothelial growth factor (VEGF) signaling [30, 53]. 

All these studies suggest that UPR activation in 
tumor cells is marked by both intrinsic and extrinsic 
factors. The high metabolic demand of the tumor 
microenvironment activates UPR and subsequently 
augments oncogenes or mutations in tumor suppressor 
genes and increases protein synthesis, and translocation 
into the ER. Additionally, cancer cells being secretory in 
nature are prone to UPR activation. 

ER STRESS COMPONENTS IN 
DIFFERENT TYPE OF CANCERS

Cancer cells differ from normal cells in their ability 
to manipulate ER stress induced cell death and are thus 

Table 1: Tumor microenvironment 

Cellular components Non-cellular components
Cells of hematopoietic origin: cells that arise in the bone 
marrow –
Lymphoid cells- T cells, B cells and NK cells
Myeloid cells- Macrophages, neutrophils and myeloid-
derived suppressor cells (MDSCs). 
Other cell types- Macrophages, platelets and dendritic cells.

Non-cellular components: Extracellular matrix (ECM) 
consisting of many distinct components — including proteins, 
glycoproteins and proteoglycans 

Cells of mesenchymal origin: Includes fibroblasts, 
myofibroblasts, mesenchymal stem cells (MSCs) and 
adipocytes. 
Angiogenic cells- Endothelial cells and pericytes

Growth factors: 
Angiogenic growth factors: VEGF, FGF2
Epidermal growth factor (EGF) family- TGFα, EGF, AR
Platelet-derived growth factor (PDGF) 
Cytokines and chemokines (CXCL12 and interleukin (IL-8) 
Osteoclastogenic growth factors- M-CSF, RANKL 
Cyclooxygenase-2 (COX-2) and prostaglandins

Besides carcinoma cells, the tumor microenvironment also consists of cellular components of myeloid and mesenchymal 
origin along with non-cellular components. A major non-cellular component in the tumor microenvironment is the 
extracellular matrix (ECM) that facilitates the maintenance of tumor structure and functionality. Abnormal ECM has been 
reported to promote tumor progression and angiogenesis. 
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resistant to apoptosis. The three branches of UPR are 
associated with different phases of growing tumors. 
For example, IRE1 signaling plays a crucial role during 
hepatocellular carcinoma (HCC) initiation [54]. Likewise 
PERK signaling helps colorectal cancer cell and squamous 
cancerous cells to survive in a nutrient and oxygen 
deficient tumor microenvironment [55, 56]. All three 
UPR signaling transducers are involved in progression of 
prostate cancer [57]. The major UPR inducing pathway 
in tumor is mediated by hypoxia. Recent studies have 
shown that spliced XBP1, a major component of the IRE1 
pathway, promotes cancer cell survival by forming a 
transcriptional complex around hypoxia-inducible factor-1 
(HIF-1) [58]. In the case of breast cancer, HIF functions 
as a chief regulator by aiding in transcription of genes 
responsible for expressing proteins that are essential 
to metastasis. It also participates in the process of 
epithelial mesenchymal transition (EMT), invasion, 
injury, extravasation, and metastatic niche formation. 
ER stress drives EMT in in vitro and in animal models 
of fibrosis through src-mediated signaling and contributes 
to cancer cell invasion [59]. ER stress also plays an 
important role in ER-mitochondrial communication. 
Activation of the classical UPR of ER is necessary for 
mitochondrial proteotoxicity or mitochondrial UPR 
(UPRmt). Mitochondrial HSP90 chaperone and its related 
protein, TRAP-1, are abundant in the mitochondria of 
tumor cells but not in those of healthy tissues, and they 
appear to antagonize mitochondrial death pathways 
[60]. Impaired function of mitochondrial HSP90 leads 
to a mitochondrial UPR and the induction of autophagy 
[61]. HIF is also involved in the progression of triple 
negative breast cancer [58, 62].  XBP1 is also known to 
modulate endoplasmic reticulum lipid raft associated 2 
(ERLIN2) protein expression, which possess the capacity 
to protect breast cancer cells from ERAD promoting their 
survival [63]. The estrogen-mediated increase in GRP78, 
in breast cancer cells expressing estrogen receptor α 
[NR3A1] confers improved resistance to ER stress and 
cell proliferation both of which can be decreased through 
siRNA mediated knockdown of estrogen receptor α [64]. 
Tamoxifen has been designed to block NR3A1, in estrogen 
receptor positive (ER+) breast cancer [65]. HER2-positive 
tumors have higher sensitivity to inhibition of HSP90 
since HER2 is a client protein of Hsp90 [66]. Pancreatic 
ductal adenocarcinomas (PDACs), with an extremely 
poor prognosis of a one year survival, have been shown 
to become significantly hypoxic as they grow. Activation 
of both PERK and IRE1 arms of the UPR are delayed in 
the presence of ER stressors in pancreatic cancer cells as 
compared to normal pancreatic cells [67]. Furthermore, 
adapting to chronic ER stress has been related to the 
induction of anterior gradient 2 (AGR2) that contributes 
to the initiation and development of PDAC [68]. Along 
with chemotherapy, radiotherapy is another component 
of the mainstay treatment for cancers of lung, breast, and 

prostate. Addition of radiotherapy to a patient treatment 
plan adds to the complexity as it activates multiple cell 
signaling cascades and induction of ER stress. A better 
understanding is required to study the influence of UPR 
function on radio- chemo- and sensitivity in extremely 
mucinous and secretory breast cancers as these forms of 
cancers are more dependent on UPR. Pharmacological 
manipulation of downstream UPR pathways may improve 
and increase tumor cell killing and reduction of toxicity to 
the neighboring healthy tissue.

Viral pathogenesis

Viral infection of host cell depends on competition 
between virus infection and the host response. The host 
cell, if conquered, gets acute or chronic infection. Each 
step in the viral life cycle beginning from viral entry 
and replication into the host cells to release of mature 
virions can be deleterious to host. Expression of viral 
protein, imbalance of calcium concentration by viroporins 
and consequent depletion of ER membrane due to the 
release of virions [69] cause ER stress in the host cell 
by generating loads of unfolded or misfolded proteins 
[1]. The host cell generates UPR to promote the ERAD 
pathway against viral infection. Viruses (RNA/DNA virus) 
may manipulate the host UPR in a way to maintain an 
environment favorable for its infectivity and persistence 
in the diseased cell (Table 2) [70, 71].

Among such chronic viruses is a family of 
herpesviruses, which utilize host UPR to maintain latency 
in the host. Herpesvirus mimics many host molecules 
and utilizes UPR to set up active lytic infection and to 
break dormancy of latent phase, thereby proving long 
time interaction of virus with host UPR. In the case of 
gammaherpesviruses, human herpesvirus 8 (HHV8) or 
Kaposi’s sarcoma associated herpesvirus (KSHV) studies 
have shown that primary effusion lymphoma (PEL) cells 
are immunophenotypically similar to pre-plasma cells and 
have unspliced XBP-1 mRNA [72, 73]. Under ER stress 
XBP-1 mRNA is processed to XBP-1s, which binds to the 
KSHV ORF50 promoter and upregulates KSHV ORF50 
gene expression inducing KSHV lytic replication. In an 
elegant study, Paul M. Lieberman's group reported that 
the ER stress due to different stimuli triggers RAD21 
cleavage and lytic switch in PEL cells [74]. They also 
found that few ER stress inducers such as DTT and protein 
synthesis inhibitors, were more effective in inducing 
RAD21 cleavage and lytic reactivation than others. For 
example, SubAB cytotoxin and tunicamycin, induced only 
partial cleavage of RAD21 with slower kinetics and lower 
amplitude of KSHV lytic reactivation. The slower kinetics 
of these compounds may be associated with a distinct 
ER stress induced by them when compared to broadly 
acting chemical inhibitors [75] which may be modulating 
additional pathways to activate a broader range of 
caspases resulting in complete cleavage of RAD21. PEL 
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cells are sensitive to ER stress-inducing agents, like 
chloroquine and it can be linked to a defect in the PERK 
and IRE1α [76, 77]. This particular sensitivity of PEL 
cells may control KSHV latency epigenetically. Similar 
in vitro and clinical studies have shown that induction of 
ER stress by 2-Deoxy-D-glucose (2-DG) shuts down viral 
replication and lytic gene expression. Thus the study not 
only supports the therapeutic potential of glucose/mannose 
analogs against gammaherpesvirus but also suggests the 
possible usage of this approach against other virus-driven 
cancers. 2-DG downregulates mRNA levels of numerous 
viral genes required for replication, including regulator 
of transcription activator (RTA), thereby impairing RTA 
transactivation loop subsequently leading to the inhibition 
of KSHV lytic gene transcription cascade [78]. Our 
studies demonstrated that HHV-8 utilizes arachidonic 
acid (AA) pathway enzymes (cyclooxygenase-2; COX-
2, 5-lipoxygenase; 5-LO, leukotriene A4 hydrolase; 
LTA4H) and its metabolites (prostaglandin E2; PGE2, 
leukotriene B4; LTB4) in their life cycle, especially in 
the maintenance of its latency, and effective inhibition of 
these pathways could potentially be used in treatment to 
control KS/PEL [79–82]. Unpublished results from our lab 
demonstrate that KSHV infection induced LTA4H serves 
as a link between KSHV life cycle and its adaptation to 
the host cell ER stress. Use of Bestatin, a well-known 
LTA4H inhibitor or LTA4H silencing induced proliferation 
arrest in KSHV+ PEL cells when compared to non-
infected (KSHV–; BJAB) Burkitt’s lymphoma cells. 
LTA4H inhibition induced ER stress proteins (calnexin, 
BiP, IRE1-α, and CHOP) and stimulated phosphorylation 
of PERK and eIF2α, which might be causing translation 

arrest and apoptosis in PEL. We also demonstrated that 
KSHV infection downregulates anti-inflammatory and 
pro-resolving metabolites such as lipoxins for successful 
viral life cycle and pathogenesis [83, 84]. It has been 
proven that Varicella-zoster virus (VZV), which possesses 
smallest genome of human herpesviruses, lacks a few 
genes used by other herpesviruses to manipulate the UPR 
[85]. Later, John Carpenter and Charles Grose established 
that VZV differentially induced the upregulation of UPR 
to deal with viral glycoprotein synthesis [86]. VZV 
upregulated cAMP responsive element binding protein H, 
an atypical UPR molecule [86]. Clearly, this will pave the 
way for future studies to disclose the relationship between 
VZV and UPR. Many viruses have evolved mechanisms 
to antagonize UPR induced eIF2α phosphorylation 
and translation control. Among these viruses is Herpes 
simplex virus I (HSV-I), which encodes ICP34.5, a 
protein homologous to cellular protein GADD34, that 
dephosphorylates eIF2α so that protein translation can 
proceed [87].  Likewise the African swine fever virus, 
encodes DP71L, which shows homology to HSV ICP34.5 
protein and can also associate with the enzyme that 
dephosphorylates eIF2α [88].  

Paradoxically,  proteins that are expected to induce 
ER stress at low levels act as inhibitors of ER stress 
instead. For example, HCV and HSV-1 viral envelope 
glycoproteins E2 and gB work as specific inhibitors of 
PERK [89, 90]. ER stress and the UPR have been aiding 
in viral replication. Human cytomegalovirus US11 protein 
and herpesvirus US2 activate UPR to increase degradation 
of the class I major histocompatibility complex proteins 
[91] resulting in an escape from the host immune response. 

Table 2: Different RNA and DNA viral diseases and associated ER stress pathways

RNA Viruses

ER stress signaling pathway Virus - viral protein

PERK- eIF2α pathway

• Hepatitis C Virus- E2 and NS5A
• Vesicular stomatitis virus -M protein
• Japanese encephalitis virus -NS2A
• Influenza A virus -NS1

IRE1–XBP1–ERAD pathway
• Hepatitis C Virus - E1 and/or E2
• Hepatitis E Virus -ORF2
• Dengue Virus -DENV2

ATF6 pathway
• Dengue Virus-DENV2
• Epstein-Barr virus -EV71
• Influenza A virus -HA

DNA Viruses
PERK- eIF2α pathway

• Hepatitis Simplex Virus 1- γ134.5 Protein
• African swine fever virus- DP71L
• Hepatitis B Virus - S protein 
• Papillomavirus- E6 
• Vaccinia virus-E3L
• Cytomegalovirus- pUL38

IRE1–XBP1–ERAD pathway • Hepatitis B Virus- HBx and S proteins
• Cytomegalovirus-US11, pUL38
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For many reoviruses competing with host mRNA 
molecules, increased ATF-4 expression induced by eIF2α 
phosphorylation is beneficial for viral replication [92]. 
The promoter of hepatitis B virus (HBV) is upregulated 
by ER stress [93]. Thus, it can be concluded that some 
viruses have evolved mechanisms to flee the negative 
effect of ER stress and concurrently exploit preferred 
UPR induced factors to their own advantage. In case of 
severe acute respiratory syndrome coronavirus (SARS-
CoV) accessory viral protein binds to ATF6 domain thus 
inducing proteolysis of ATF6 [94]. The cleaved DNA 
binding and transcription activation domains of ATF6 
then move from ER to the nucleus [94]. These findings 
suggest that viruses may exploit their own protein(s) to 
directly modulate UPR responses. Viruses can also exploit 
the ERAD pathway [95] to degrade immune molecules or 
viral envelope glycoproteins to escape immune responses 
of the host. Polyomaviruses use ERAD during their 
life cycles to uncoat the capsid and present the nuclear 
localization signals on capsid proteins for initiation of 
viral DNA replication and virion maturation. Viruses 
can hinder ERAD tuning and can use ERAD-associated 
machinery to form isolated lipid vesicles for replication 
and as an escape from immune detection. 

UPR in the host is much more than a homeostatic 
cellular response to virus infections. UPR is closely 
associated with inflammatory pathways and innate 
immunity induced by host pattern recognition receptors 
(PRRs). As a response to this the professional virus killer 
gets activated and releases interferons. One of the proximal 
UPR sensors, inositol-requiring enzyme 1 (IRE1) which 
activates IRE1-dependent decay (RIDD), is evolutionarily 
related to virus killer RNase L [96]. Since viruses naturally 
infect and transfer DNA into the host cells, viral vectors 
are now being increasingly used as gene delivery vehicles 
in gene therapy. Vectors based on retroviruses integrate 
their viral genome into the chromosomal DNA of the host 
cell. Episomal vectors like adenovirus and HSV-1 deliver 
their genomes into the nucleus of the target cell, where 
they continue as separate extrachromosomal element. 
Vaccinia viral vectors have also been used for cancer gene 
therapy [97, 98] because of proficient infectivity and gene 
expression in complex tumors [99]. Also, the safety profile 
of Vaccinia virus has already been determined due to its 
use as a vaccine for small pox in humans [99]. Viruses 
from the Herpesviridae family (VZV, EBV) are also 
being used for cancer gene therapy [100]. EBV, owing 
to its specificity for B cells, has been utilized to deliver 
(granulocyte-macrophage colony-stimulating factor) GM-
CSF therapy to patients of B-cell chronic lymphocytic 
leukemia (B-CLL) [101]. Since EBV and other viruses 
are infective to cells, their modification and validation is 
essential to make them safe enough to be used for gene 
therapy. It is becoming significantly important to study 
and understand virus host interactions so that viral vectors 
can be used in gene therapy [102].

THERAPEUTIC STRATEGIES TO 
CONTROL ER STRESS RESPONSES IN 
CANCER

As discussed, stress stimuli in the tumor 
microenvironment activate UPR, which further influences 
cellular processes such as metastatic growth, apoptosis, 
inflammation, and host immune responses. There can 
be two strategic plans to target UPR signaling- one by 
effectively killing cancer cells or by hindering UPR-
mediated adaptive responses which may help tumor cells 
proliferate in harsh tumor microenvironment conditions 
and resist the treatment. 

UPR effectors upregulate VEGF-A and other pro-
angiogenic factors in cancer cells [63, 103] including 
breast cancer [104, 105]. BiP/GRP78, a master regulator 
for ER stress response helps premalignant cells adapt to 
UPR induced apoptosis. So therapeutic strategies aimed 
at reducing BiP/GRP78 or targeting UPR sensors can 
be effective against cancer. BiP/GRP78 is increased in 
a variety of cancer types including breast, lung, colon, 
prostate, skin, melanoma and many other malignancies 
[64, 106, 107].  Our study and similar studies from the 
past reported high levels of GRP78 are associated with 
rapid proliferation and malignancy of tumors [64, 108].  
In breast cancer cells associated with estrogen receptor 
α [NR3A1], increase in GRP78 abundance signifies cell 
proliferation and improved resistance to ER stress. The 
siRNA-mediated knockdown of estrogen receptor α 
can be strategically used to prevent tumor progression 
in these cases [64]. Similarly, chemotherapeutic agents 
can be used to reduce GRP78 in glioblastoma cell lines 
and solid tumors. The therapy increases expression 
of CHOP and caspase 7, leading to inhibition of tumor 
formation and finally inducing cellular apoptosis [108, 
109]. BiP/GRP78 is positively regulated by the mitogen 
activated protein kinase MAPK pathway. Thus inhibition 
of the MAPK pathway boosts caspase-4 mediated ER 
stress induced apoptosis in melanoma cells. Moreover, 
there are antitumor agents that decrease GRP78 at the 
protein level by directly binding GRP78 to facilitate its 
degradation [108]. Based on these characteristics, GRP78 
is considered as a biomarker of cancer progression [110]. 
Since inhibition of BiP/GRP78 can play a cytoprotective 
role, therefore it is being utilized in developing treatment 
strategies against multidrug resistant cancer. Likewise 
UPR signal transducers and proteasome inhibitors such as 
Bortezomib [111] involved in activating UPR can also be 
used to check cancer progression.

XBP1 represents a regulator of plasma cell 
differentiation and overexpression of XBP1 is critical 
for multiple myeloma induction. Inhibition of XBP1 
splicing has been shown to reduce multiple myeloma cell 
growth. XBP1 splicing induced by IRE1α, prompt cellular 
proliferation through increased expression of cyclin A1 thus 
IRE1α inhibition may expose multiple myeloma cells to ER 
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stress and reduce their survival [112]. Chevet et al, 2015 
and other groups of scientists have shown that directed 
therapeutics targeting the RNase activity of IRE1 reduces 
the progression of various forms of cancer [113, 114]. 
Similar approaches have been pursued in various models 
of experimental glioblastoma [115–117]. Studies on human 
cancer tissue samples (Cancer Genome Atlas Research 
Network, 2008; Parsons et al, 2008) revealed the presence 
of three somatic mutations (S769F, Q780 and P336L) on 
the IRE1 gene in GBM [118, 119]. Chevet et al, 2018 also 
showed the antagonist role of XBP1s and RIDD on tumor 
growth, where RIDD of mRNA and miR17 depict anti-
tumoral features by remodeling of tumoral stroma [120]. 
Recent studies have shown that STF-083010, an inhibitor 
for XBP1, can restore sensitivity to tamoxifen in tamoxifen 
resistant MCF-7 cell lines and a synergistic effect of both 
drugs significantly delay breast cancer progression. Clinical 
trials have further demonstrated that XBP1 expression levels 
are highly correlated to cell survival in ER+ breast cancer 
patients. Loss of XBP1 has been linked to spontaneous 
intestinal inflammation and inflammatory bowel disease in 
humans [121]. Modulators of IRE1 signaling like MKC-
3946 [103], 3-methoxy-6-bromosalicylaldehyde [122], 
4μ8C [123], STF-083010 [124], KIRA-6 and toyocamycin 
[125] are being therapeutically used in the case of multiple 
myeloma. These inhibitors are shown to kill cancer cells or 
sensitize them to common chemo- or radiotherapies. The 
inhibitors of XBP1 mRNA splicing work efficiently and do 
not affect the phosphorylation and the oligomerization of 
IRE1. ATF6 negatively regulates genes involved in cellular 
senescence and mediates cell survival through upregulation 
of LC3B, a component of the autophagosomal membrane. 
ATF6 is also responsible for upregulation of XBP1 and thus 
BiP/GRP78 expression in liver cancer [126].

Under hypoxic conditions the PERK/eIF2α pathway 
increases cell growth and survival of cancerous cells. Since 
PERK activates many angiogenic genes, its inhibition 
was found successful in reducing tumor growth both in 
vitro and in vivo. Recently our lab and other ongoing 
studies have found that Salubrinal is efficient in curbing 
dephosphorylation of eIF2α and thus can be used as a 
potential therapy against inflammatory breast cancer [127]. 
These results indicate that new therapeutic antitumoral 
agents inhibiting ER chaperones level or UPR adaptive and 
prosurvival pathways can be utilized as potential cancer 
therapies with improved outcomes. Recently, two anticancer 
drugs GSK2606414 [128] and GSK2656157 [129], which 
act as ATP competitive inhibitors and target PERK/eIF2α 
signaling based either on eIF2α phosphorylation inhibition 
or on its prolonged phosphorylation, have been introduced. 
Inhibition of eIF2α phosphorylation by PERK causes 
increased ER protein load and further reduces adaptation 
to ER stress leading to cell death. GSK2656157 has been 
reported to reduce tumor growth in mouse xenograft models 
[130]. Most recently the integrated stress response inhibitor 
(ISRIB) has been identified as a new PERK signaling 

inhibitor which rather than inhibiting PERK or eIF2α 
phosphorylation blocks downstream processes to reverse 
the effects of eIF2α phosphorylation. ISRIB treatment only 
affects the survival of cells under ER stress [131].

One of the major undesirable consequences of 
cancer therapy is that many anticancer drugs activate 
UPR that can lead to drug resistance in patients. Thus 
recent combined therapeutic approaches are proving to 
be more efficient against UPR activation. For example 
usage of 16F16 (PDI inhibitor) resensitizes tumor cells to 
imatinib in leukemia cells [132]. Likewise, Doxorubicin 
or Salubrinal along with bortezomib are more effective 
against diffuse large B cell lymphoma and hepatoma, 
respectively. Moreover, in cases of multiple myeloma, 
toyocamycin has been effective against bortezomib 
resistance [125, 133].

CONCLUSIONS AND PERSPECTIVES

The three branches of UPR help tumor cells survive 
harsh tumor microenvironments and also signal surrounding 
non-tumor cells to facilitate cancer progression. The 
contradictory and complex role of each of these transducers 
in regulating antitumor host responses makes it difficult 
to put them to practical usage in targeted therapies against 
cancer. These UPR transducers are regulated by intrinsic 
timers e.g. prolonged ER stress guides IRE1-dependent 
decay (RIDD) leading to apoptosis. PERK activation and 
deactivation are regulated in similar manner. All three 
branches of UPR may have their own transcriptional factor 
activity for a single target CHOP, which plays a vital role in 
deciding the fate of the cell. Silencing a single component of 
UPR at a time is not a rational therapeutic approach. These 
targets may require coordination between two branches of 
the UPR [134, 135].  Currently, experimental models are 
being used to monitor changes in tumor cells under stress. 
For example, it has been seen that under hypoxia, the initial 
phase of eIF2α phosphorylation leads to protein attenuation 
followed by a transient period of protein synthesis before 
a permanent reduction in the process of translation [135]. 
These findings suggest that the effects of future drugs must 
be time-dependent.

GRP78, which is said to regulate the UPR system, 
can affect cell apoptosis in different ways by either 
exhibiting its chaperone activity or by preventing UPR 
sensor activation and preserving ER calcium homeostasis 
[136]. Elevated GRP78 levels are usually associated 
with higher pathologic grade, recurrence, and poor 
patient survival in cancers of the breast, liver, prostate, 
and colon [110]. GRP78 assists in tumor progression, 
spread and drug resistance [110]. Moreover, dormant 
tumor cells and quiescent tumor cells rely on GRP78 to 
escape chemotherapy [110]. Several naturally occurring 
compounds with anticancer activity such as genistein, 
an active component of soy; epigallocatechin gallate, a 
component of green tea, and salicyclic acid from plants 
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inhibit either GRP78 expression or its activity [110]. In 
cancer, versipelostatin, a repressor of GRP78 expression 
is being used to target the UPR to promote apoptosis or 
else the usage of proteasomal inhibitors may overload the 
UPR. Overall, the ideal approach would be to compose 
both targets without any toxicity. Ideally UPR inhibitors 
must specifically target the tumor tissue but there is a need 
to monitor potential toxicities of these inhibitors against 
B-cells or pancreatic β-cells during future drug discovery 
efforts [137]. Tissue specific UPR patterns might help to 
differentiate target tissue and prevent inevitable tumor 
progression. During chemotherapy, activation of UPR 
components, particularly PERK, can arrest the cell 
cycle temporarily but the tumor can regrow once the 
effect of therapy subsides or cells adapt themselves to 
stress.  Additionally, the inhibition of one branch might 
result in altered signaling through other branches. As 
discussed previously, the ICD induction by UPR plays 
a significant role in the development of novel anticancer 
strategies. Studies have shown that checkpoint blockade 
immunotherapy can only be considered for patients when 
tumors are infiltrated by tumor-infiltrating lymphocytes 
(TILs) prior to the treatment [138]. In these cases, 
chemotherapies that do not induce ICD are considered 
along with immunogenic chemotherapies that may induce 
UPR response. In conclusion, the capability of the UPR to 
manage cell fate seems to be a potential cancer therapeutic 
target. However, contradictory effects of each UPR 
signaling pathway as well as other confounding factors 
must be addressed before coming up with a treatment plan 
involving ER stress regulators.
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