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ABSTRACT

Cancer immunotherapies that remove checkpoint restraints on adaptive 
immunity are gaining clinical momentum. Approaches aimed at intrinsic cellular 
immunity in the tumor microenvironment are less understood, but are of intense 
interest, based on their ability to induce tumor cell apoptosis while orchestrating 
innate and adaptive immune responses against tumor antigens. The intrinsic immune 
response is initiated by ancient, highly conserved intracellular proteins that detect 
viral infection. For example, the RIG-I-like receptors (RLRs), a family of related 
RNA helicases, detect viral oligonucleotide patterns of certain RNA viruses. RLR 
activation induces immunogenic cell death of virally infected cells, accompanied by 
increased inflammatory cytokine production, antigen presentation, and antigen-
directed immunity against virus antigens. Approaches aimed at non-infectious RIG-I 
activation in cancers are being tested as a treatment option, with the goal of inducing 
immunogenic tumor cell death, stimulating production of pro-inflammatory cytokines, 
enhancing tumor neoantigen presentation, and potently increasing cytotoxic activity 
of tumor infiltrating lymphocytes. These studies are finding success in several pre-
clinical models, and are entering early phases of clinical trial. Here, we review pre-
clinical studies of RLR agonists, including the successes and challenges currently 
faced RLR agonists on the path to clinical translation.

INTRODUCTION

The immune system is capable of targeted tumor 
cell killing through the process of immunosurveillance. 
Although tumors often develop ways to escape 
immunosurveillance, the growing interest and 
understanding of molecular interactions that occur 
between the tumor and the immune system have 
resulted in treatment strategies aimed at harnessing the 
immune system to target cancers. Recent advances in 
tumor immunology have produced immune checkpoint 
inhibitors (ICIs), cancer treatments designed to relieve 

the checkpoint restraints on adaptive immunity [1]. ICIs 
have revolutionized treatments for many types of cancer 
[1–3]. Despite these successes, not all patients respond to 
ICI therapy, for reasons that are varied and incompletely 
understood. It is thought that ICIs may be less effective 
in tumors that are poorly immunogenic, as defined by 
low levels of tumor infiltrating lymphocytes (TILs), 
minimal cross-presentation of tumor neoantigens, and 
high levels of immune suppressive leukocytes such as 
regulatory T-cells (TRegs), tumor associated macrophages 
(TAMs) and myeloid derived suppressor cells (MDSCs) 
[4–7]. Innovative strategies to increase immunogenicity in 
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tumors are being explored through a variety of approaches. 
One emerging strategy is based on activation of innate 
immunity in the tumor microenvironment (TME) [8, 9]. 
Innate immunity is a powerful arm of the immune system 
responsible for rapid anti-microbial immunity, often 
inducing programmed cell death of an infected cell. Innate 
immunity functions beyond the infected cell as well, by 
modulating the expression of cytokines and chemokines 
that recruit T-lymphocytes to the affected tissue, enhance 
antigen presentation, and increase cross-priming to 
antigen-specific T-cells [8, 10]. This idea is being explored 
extensively in regards to the pattern recognition receptor 
(PRR) known as Stimulator of Interferon Genes (STING) 
[11, 12]. Synthetic STING ligands potently induce anti-
tumor immunity in several cancers, including breast 
cancer, chronic lymphocytic leukemia, colon cancer, 
and squamous cell carcinoma [13–17]. However, there 
is increasing evidence that STING signaling might be 
defective in some cancers, due to mutations, promoter 
methylation, and decreased expression of STING pathway 
effectors [18, 19], thus limiting their potential efficacy 
in the tumor cell compartment of the TME. However, 
other cells of the TME, particularly cells of the immune 
compartment, may retain STING signaling even when the 
STING pathway is defective within the tumor cells, per se, 
allowing STING ligands to induce innate immunity within 
the TME under these circumstances [20].

Viral nucleic acid sensors, such as the RNA 
helicase known as retinoic acid-inducible gene I (RIG-I, 
encoded by the gene DDX58) [21], are expressed in most 
cells of the human body, including tumor cells [22]. 
When infected by an RNA virus, double-stranded RNA 
replication intermediates derived from the virus bind to 
RIG-I [23–26] and activate a RIG-I inflammasome leading 
to pyroptosis, a highly immunogenic mechanism of 
programmed cell death [27–29]. A hallmark of pyroptosis 
is the formation of pores in the plasma membrane 
[30], leading to hypotonic cell swelling and leakage 
of intracellular contents, including danger associated 
molecular patterns (DAMPs), into the microenvironment. 
RIG-I signaling simultaneously induces expression of 
pro-inflammatory cytokines [8, 10]. Together, DAMPs 
and pro-inflammatory cytokines stimulate a local acute 
inflammatory immune response aimed at removal of 
virus and virally-infected cells [31]. Interestingly, viral 
nucleotide motifs can be mimicked using synthetic, non-
infectious oligonucleotides. These RIG-I agonists are 
capable of triggering RIG-I signaling, pyroptosis, and 
acute inflammation [26, 32–35]. In the cancer setting, 
RIG-I activation could thus provide a three-pronged 
attack: 1.) direct activation of tumor cell death; 2.) 
cytokine-mediated activation of innate immune effectors 
(e.g., macrophages, natural killer cells), and 3.) increased 
recruitment and cross priming of adaptive immune 
effectors (e.g., CD8+ T-lymphocytes) through a cytokine-
enriched microenvironment and enhanced activity of 

professional antigen presenting cells [APCs, e.g., dendritic 
cells (DCs) or macrophages] (Figure 1). Synthetic RIG-I 
agonists are being explored as a therapeutic approach in a 
diverse range of cancers [27, 33, 34, 36]. Here, we review 
studies of RIG-I signaling in the tumor microenvironment, 
and preclinical studies investigating RIG-I agonists for 
cancer treatment.

Activation of RIG-I induces pro-inflammatory 
signaling in a cell-intrinsic manner

RIG-I was first identified as a cytosolic DExD/H 
box RNA helicase activated in response to certain RNA 
viruses [21]. RIG-I is activated upon recognition of 
its ligand, double-stranded RNA sequences modified 
with a 5’-triphosphate (5’-3pRNA) or 5’-diphosphate 
(5’-2pRNA) motif [24, 26, 27, 37]. RIG-I activation 
may occur in response to other RNA motifs, including 
blunt dsRNAs [38], monomeric RNA within defective 
human immunodeficiency virus (HIV)-1 particles [39], 
cytoplasmic long non-coding RNAs [40], small nuclear 
RNAs [41–44], or endogenous retroviral transcripts. 
In addition to the DexD/H box RNA helicase domain, 
RIG-I is characterized by an amino-terminal Caspase 
Activation and Recruitment Domain (CARD) domain, 
and a Carboxy-Terminal Domain (CTD) [45–47]. 
Once activated by its ligand, RIG-I undergoes an 
ATP-dependent conformational change, exposing its 
CARD domain for polyubiquitylation [48] by ubiquitin 
ligases such as TRIM25, Riplet and others [49–52]. 
Once polyubiquitylated, a mitochondrial signalosome, 
comprised of the proteins WHIP, PPP6C and TRIM14, 
recruits RIG-I to the mitochondrial surface where the 
CARD domain of RIG-I interacts with the CARD domain 
of Mitochondrial Anti-Viral Signaling (MAVS), a requisite 
RIG-I co-factor [49, 53–55].

Once engaged, MAVS signaling activates three 
kinases that serve as regulators of inflammation, Inhibitor 
of κB-Kinase (IKK)-γ, TANK-Binding Kinase (TBK)-
1 and IKK-ε [56–58]. These kinases phosphorylate 
Interferon (IFN) Regulatory Factor (IRF)-1, IRF-3, IRF-7, 
and Nuclear Factor (NF)-κB [59–61], transcription factors 
that drive expression of a pro-inflammatory transcriptional 
program that includes type I IFNs and pro-inflammatory 
cytokines [45, 62]. Importantly, IFN-α, IFN-β, and other 
pro-inflammatory cytokines produced in response to 
RIG-I activation drive a feed-forward signaling loop 
that maintains high expression levels of RIG-I, IFNs 
and additional pro-inflammatory IFN-stimulated genes 
(ISGs), by maintaining phosphorylation and activation 
of the transcription factors IRF-3, IRF-7, and NF-κB, 
and by phosphorylation of the transcription factor Signal 
Transducer and Activator of Transcription (STAT)-1, 
which occurs in response to IFN-α/β receptor (IFNAR)-
mediated activation of JAK-STAT signaling (Figure 
2) [62]. This feed-forward signaling model amplifies 
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inflammatory cytokine production in the infected and 
neighboring cells, while recruiting leukocytes to the 
infected area, including pro-inflammatory lymphocytes. 
Since a ‘T-cell inflamed’ microenvironment is often 
associated with an improved prognosis for several cancers, 
and correlates with increased tumor sensitivity to ICIs, the 
pro-inflammatory phenotype induced by RIG-I activation 
may be an attractive treatment approach to increase tumor 
immunogenicity and clinical success of ICIs.

Two RIG-I-like receptors (RLRs) with structural 
similarity to RIG-I have been identified. One of these 
RLRs, Melanoma Differentiation Associated (MDA)-5, 
harbors an amino-terminal CARD domain, a DexD/H box 
motif, and a CTD domain [63, 64]. Like RIG-I, MDA-5 
induces type I IFNs and other pro-inflammatory cytokines 
in response to viral nucleotides, albeit viral nucleotide 
motifs that are distinct from those that activate RIG-I. 
MDA-5 is activated by blunt-ended, long double-stranded 
RNA [e.g. polyinosinic-polycytidylic acid, or poly(I:C)], 
a ligand that also activated some Toll-Like Receptors 
(TLRs). In contrast to RIG-I and MDA-5, the other RLR 

known as Laboratory of Genetics and Physiology (LGP)-
2 lacks the CARD domain shared by RIG-I and MDA-5, 
but is otherwise similar to the other RLRs [65]. Without 
the CARD domain, LGP-2 is unable to interact directly 
with MAVS to initiate a pro-inflammatory response. There 
are reports suggesting that LGP-2 activation interferes 
with RIG-I signaling, but that MDA-5 signaling may 
be enhanced by LGP2 [48, 66–69]. The implications of 
LGP2 expression and signaling in the context of cancer 
therapy, and how LGP2 might affect therapeutic responses 
to RIG-I agonists, are currently unclear.

RIG-I signaling potently activates programmed 
cell death

In the context of viral infection, RIG-I signaling is 
capable of inducing programmed cell death (PCD) as a 
mechanism to eliminate virally-infected cells. Cellular 
mechanisms by which RIG-I induces PCD include 
activation of the intrinsic apoptosis pathway, the extrinsic 
apoptosis pathway, and a type of programmed necrosis 

Figure 1: RLR activation signals innate immunity in the TME. When tumor cells are treated with an RIG-I mimetic, inflammatory 
cytokine and type I IFN expression is rapidly upregulated, inducing innate immune responses in the tumor microenvironment. The cytolytic 
activity of leukocytes, such NK cells and macrophages, is increased in response to this IFN-enriched microenvironment. Maturation and 
activation of macrophages and DCs result in enhanced antigen presentation to T-lymphocytes in tumor draining lymph nodes. T-regulatory 
cell differentiation is decreased by the pro-inflammatory microenvironment produced by RIG-I activation.
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termed ‘pyroptosis.’ The molecular factors governing 
the mode of RIG-I mediated cell death may depend to 
some extent on cell type. For example, RLR activation 
in keratinocytes, melanoma cells, glioblastoma cells, 
and many leukemia cells cause mitochondrial outer 
membrane permeabilization (MOMP), cytochrome-C 
release from mitochondria, and activation of caspase-9 

and Apaf-1, the irreversible molecular switch that governs 
the intrinsic apoptotic pathway [27]. However, RIG-I 
signaling in pancreatic and prostate cancer cells robustly 
induces expression of several factors that activate the 
extrinsic apoptotic pathway, including Fas, Fas Ligand, 
Tumor Necrosis Factor (TNF), TNF-related apoptosis-
inducing ligand (TRAIL), and the TRAIL receptors Death 

Figure 2: RIG-I activation induces Type I IFNs, which support pro-inflammatory transcriptional reprogramming. 
RIG-I binding to 5’-3pRNA or 5’-2pRNA induces a conformational change, allowing RIG-I CARD domains to be polyubiquitylated by 
E3 ligases (e.g., Riplet or TRIM25). Polyubiquitylated RIG-I is recruited to mitochondria outer membranes, where it interacts with MAVS, 
which then activates IKK-ε, IKK-γ, and TBK1, kinases responsible for phosphorylation/activation of transcription factors (ATF-1, c-Jun, 
CBP, IRF-3, NF-κB). These transcription factors induce an expression profile that includes Type I I IFNs and additional pro-inflammatory 
cytokines. Type I IFNs bind to IFNAR, activating the intracellular tyrosine kinase JAK1/2, which in turn phosphorylates pro-inflammatory 
STAT transcription factors, thus driving expression of additional ISGs and amplifying the IFN-inducible positive feedback loop to support 
and maintain a pro-inflammatory microenvironment.
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Receptor (DR)-4 and DR-5, causing caspase-8 activation 
and extrinsic apoptosis. The mechanism by which RIG-I 
signaling upregulates TRAIL, FAS and other extrinsic 
apoptosis-activating factors are not entirely clear, although 
it is likely that IFN signaling is involved, given that Fas, 
TRAIL, and caspase-8 are known ISGs [70, 71].

Another mode of programmed cell death induced 
upon RIG-I activation is termed “pyroptosis,” an 
immunogenic form of cell death occurring in response 
to activation of the inflammasome, a multi-protein 
holoenzyme comprised of capsase-1 oligomers, adaptor 
proteins known as ASC (Apoptosis-associated Speck 
with a Caspase-recruitment domain), and a molecular 
sensor of pathogens, such as RIG-I (Figure 3). RIG-I 
can interact, via its CARD domain, with the CARD 
domains of inflammasome components [72], resulting 
in auto-cleavage and activation of caspase-1 [29, 73], 
which then allows proteolysis of the pro-inflammatory 
cytokines interleukin (IL)-1β and IL-18 [73], which 
amplify inflammatory signaling in the local environment 
while activating natural killer (NK) cells and recruiting 
leukocytes to the affected tissue. Caspase-1 activation 
also results in cleavage of Gasdermin-D, removing the 
auto-inhibitory domain from Gasdermin-D to allow 
oligomerization at the plasma membrane and pore 
formation. Plasma membrane permeabilization by 
Gasdermin-D pores allows water to enter and swell the 
cell, a hallmark of necrosis. Once membrane integrity is 

lost, intracellular contents, including DAMPs, permeate 
the extracellular environment, inducing danger responses 
in neighboring cells, which amplifies the inflammatory 
response.

RIG-I signaling in tumor cells affects the 
complex tumor microenvironment

The capacity for RIG-I signaling to induce cell 
death, while inducing pro-inflammatory responses, makes 
therapeutic use of RIG-I mimetics a highly attractive 
option in cancers. A growing number of studies show that 
the molecular responses to RIG-I or RLR signaling are 
retained in tumor cells and in non-tumor cells of the tumor 
microenvironment, and support innate immune responses 
against tumor cells [34]. For example, RIG-I activation 
in ovarian cancer cells enables NK-mediated tumor cell 
killing in culture [36]. Further, RIG-I signaling within the 
tumor cell increases phagocytosis of the affected tumor 
cell by professional APCs, including macrophages and 
DCs, thus providing tumor antigens for presentation to 
lymphocytes [32]. At the same time, the IFN-enriched 
microenvironment generated by tumor cell RIG-I 
signaling increases expression of major histocompatibility 
complex (MHC)-II antigen presentation molecules in 
macrophages and DCs, which may further increase tumor 
antigen cross-presentation. In support of this idea, it is 
reported that DCs presented pancreatic cancer-derived 

Figure 3: RIG-I activation induces immunogenic modes of programmed cell death. Activated RIG-I recruits the inflammasome 
adaptor protein ASC, which facilitates binding and oligomerization of Caspase-1, leading to caspase-1 auto-cleavage and activation. 
Caspase-1 cleaves protein precursors of IL-1β and IL-18 to generate their mature, pro-inflammatory isoforms, which are then secreted. 
Caspase-1 activity also drives cleavage of the auto-inhibitory domain from Gasdermin-D, liberation the amino-terminal pore-forming 
domain of Gasdermin-D to translocate to the plasma membrane and oligomerize, forming pores that initiate hypotonic cellular swelling and 
lysis, followed by release of DAMPs into the extracellular space, thus inducing an inflammatory response from surrounding cells.
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antigens more robustly to T-cells if RIG-I signaling was 
activated in pancreatic cancer cells prior to their co-culture 
with DCs [32, 36]. Similar results were observed upon 
RIG-I activation ovarian cancer cells prior to co-culture 
with macrophages [74].

RIG-I mimetics are gaining traction as a possible 
cancer treatment in pre-clinical studies

Through direct activation of intrinsic immunity 
in cancer cells, and accompanying indirect activation 
of leukocytes in the TME, synthetic RIG-I mimetics are 
under investigation for cancer treatment in pre-clinical 
studies in hepatocellular carcinoma [75], leukemias 
[76], melanomas [27], prostate cancers [77] and others. 
RIG-I agonists that are stable and functional in vivo are 
under current development. For example, a minimal 
5’-triphophosphorylated stem-loop RNA (SLR) sequence 
for intra-venous delivery to mice was recently reported 
[25]. The stem-loop structure enhances structural stability 
of the complex, a key determinant of RIG-I ligand 
potency. Delivery of SLR sequences to mice in vivo 
activated RIG-I signaling, IFN induction, and expression 
of genes required for potent anti-viral immunity, although 
this RIG-I mimetic has not yet been studied in tumors 
grown in vivo. A pre-clinical compound specific for 
RIG-I is RGT100 (Merck/Rigontec), currently in phase I 
clinical trials for treatment of advanced solid tumors and 
lymphomas (NCT03065023), although peer-reviewed 
preclinical reports for RGT100 were not identified, to our 
knowledge. Another compound which activates RIG-I by 
unknown mechanisms is SB-9200 [78], which is currently 
under investigation as an anti-viral agent, but has not yet 
been tested in the pre-clinical setting of cancer treatment.

In addition to RIG-I specific mimetics, synthetic 
RLR mimetics are being investigated in pre-clinical 
and early clinical studies. The compound Hiltonol 
[polyinosinic-polycytidylic acid stabilized with poly-l-
lysine and carboxymethylcellulose (poly-ICLC)] [79, 
80] was tested in combination with chemotherapy for 
patients with Stage IV anaplastic astrocytoma, resulting 
in increased overall survival (OS) to >8 years, versus 
the expected survival of two years on conventional 
chemotherapy alone [81]. Another trial tested poly-ICLC 
in combination with radiation and temozolomide in newly 
diagnosed adult glioblastoma patients. In these studies, 
intramuscular poly-ICLC increased OS to 18.3 months 
from 14.6 months [82–84]. Further, poly-ICLC is being 
tested as a tumor vaccine adjuvant in several cancer 
types, with a growing number of successes in Phase I 
and II clinical trials for gliomas [85], breast cancer [86], 
pancreatic cancer [87], ovarian cancer [88, 89], multiple 
myeloma [90], and others, highlighting the potential 
advances that Poly-ICLC may achieve across a spectrum 
of cancers. Although poly-ICLC potently activates MDA-
5, it also activates Toll-like Receptor (TLR)-3, making the 

specific contributions of RLR signaling to the therapeutic 
effects of poly-ICLC, and to patient outcome, difficult to 
dissect.

The future of RIG-I agonists in cancer

Exciting innovations within the field of RIG-I 
agonists are emerging. For example, a powerful, bimodal 
application of RNAi-based silencing of intra-tumoral gene 
targets using a 5’-triphosphate modified dsRNA sequence 
would allow for RIG-I activation and simultaneous gene 
targeting. This approach was demonstrated in melanomas, 
using 5’-3p-siRNA sequences specific to the anti-apoptotic 
gene BCL2. Delivery of this construct to cells potently 
stimulated IFN production and NK activation, while 
enhancing tumor cell killing through Bcl-2 ablation [34]. 
This concept was validated using a 5’-3p-siRNA targeting 
transforming growth factor (TGF)-β in pancreatic cancer 
cells, resulting in tumor cell apoptosis, IFN induction, 
and enhanced CD8+ T cell responses [36]. A similar 
approach was used in models of non-small cell lung 
cancer, using 5’-3p-siRNA sequences against vascular 
endothelial growth factor (VEGF), resulting in reduced 
tumor angiogenesis while enhancing anti-tumor immunity 
[91]. Defining the most appropriate gene silencing target 
may be a difficult task, but the use of siRNA paves the 
pathway for targeting certain oncogenes (e.g., MYC) that 
are currently ‘undruggable.’

Despite the potential success of RIG-I and RLR 
agonists, the immune system is powerful and incompletely 
understood, warranting cautious optimism and thorough 
examination of the caveats associated with innate immune 
activation, including possible on-target induction of 
autoimmunity, or induction of a cytokine ‘storm’ which 
could pose a threat to patient safety [92–94]. It is important 
to note that, since RIG-I is expressed in most cells of the 
human body, the consequences of RIG-I activation might 
be widespread, driving symptoms like fatigue, depression 
and cognitive impairment. In ICI-based therapies, these 
side-effects are generally managed by corticosteroid 
immunosuppression.

Delivery of small nucleotide sequences to tumor 
cells and leukocytes within the TME is another major 
obstacle to the widespread utility of RIG-I or RLR-
based therapeutics in the cancer setting. Studies aimed 
at generating stable, specific and potent RIG-I ligands 
that retain functionality in vivo have been reported only 
recently. For example, a study employing a minimal 
5’-triphophosphorylated stem-loop RNA (SLR) sequence 
delivered by intra-venous delivery to mice activated 
in RIG-I signaling, IFN induction, and expression of 
genes required for potent anti-viral immunity in vivo. 
A recently described ‘conditional’ RIG-I ligand, in 
which the 5’-triphosphorylated terminus of the RNA 
duplex remained shielded until release by predetermined 
molecular cues in vivo, could enhance delivery of RIG-I 
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agonist to tumors, and minimize RIG-I activation outside 
of the TME [95]. However, the efficacy of RIG-I ligands, 
including SLRs and conditional RIG-I ligands, not yet 
been tested in animal models of cancer [25].

CONCLUSION

Therapeutic RIG-I and RLR agonists are emerging 
as a novel approach to engage the immune system in 
the fight against cancer. Importantly, RIG-I signaling 
directly promotes tumor cell killing through three 
distinct modes of action: intrinsic apoptosis, extrinsic 
apoptosis, and pyroptosis. Further, simultaneous 
activation of the innate and adaptive arms of the immune 
system may generate durable therapeutic responses. 
The multi-faceted mechanisms by which RLR agonists 
eliminate cancer cells represent the well-rounded arsenal 
of weapons required to fight aggressive and metastatic 
cancers effectively.
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