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ABSTRACT

Breast cancer (BC) is the most common cancer in women worldwide and second 
leading cause of cancer-related death. Understanding gene-environment interactions 
could play a critical role for next stage of BC prevention efforts. Hence, the purpose of 
this study was to examine the key gene-environmental factors affecting the risks of BC 
in a diverse sample. Five genes in one-carbon metabolism pathway including MTHFR 
677, MTHFR 1298, MTR 2756, MTRR 66, and DHFR 19bp together with demographics, 
lifestyle, and dietary intake factors were examined in association with BC risks. A total 
of 80 participants (40 BC cases and 40 family/friend controls) in southern California 
were interviewed and provided salivary samples for genotyping. We presented the 
first study utilizing both conventional and new analytics including ensemble method 
and predictive modeling based on smallest errors to predict BC risks. Predictive 
modeling of Generalized Regression Elastic Net Leave-One-Out demonstrated alcohol 
use (p = 0.0126) and age (p < 0.0001) as significant predictors; and significant 
interactions were noted between body mass index (BMI) and alcohol use (p = 0.0027), 
and between BMI and MTR 2756 polymorphisms (p = 0.0090). Our findings identified 
the modifiable lifestyle factors in gene-environment interactions that are valuable 
for BC prevention.

INTRODUCTION

Breast cancer (BC) is the most common cancer 
in women worldwide [1] and second leading cause of 
cancer-related death [2]. The incidence can be explained 
by gene-environment interactions involving genetic 
mutations, health behaviors, and environmental factors 
including pollution [3–5]. Comparable to most cancers, 
old age is the strongest risk factor for BC, in addition 
to other factors of long menstrual history, nulliparity, 
having first child after age 30, use of oral contraceptives, 

reproductive hormones, and inherited genetic mutations in 
BRCA1, BRCA2, and other BC susceptibility genes [3–5]. 
Modifiable risk factors such as obesity, physical inactivity, 
and alcohol consumption were also known to contribute to 
BC susceptibility [2]. Mutations on high penetrance genes 
such as BRCA1 and BRCA2 are estimated to explain only 
15% of familial BC, while low penetrance genes together 
with environmental factors have been linked with greater 
percentage of BC risks [6]. While progress have been 
made on BC rate reduction over past 3 decades, emphasis 
remains on primary prevention of cancer globally by the 
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World Health Organization (WHO) [7]. This is where 
understanding gene-environment interactions could play 
a critical role for next stage of prevention efforts.

Epidemiological evidence suggests that intake of 
folate and other B-vitamins, and polymorphisms of critical 
genes involved in one-carbon metabolism (OCM) could 
influence the risk of BC [8, 9]. Folate in the OCM pathway 
can influence deoxyribonucleic acid (DNA) methylation, 
nucleotide synthesis, DNA replication and repair, gene 
expression, and carcinogenesis [10]. Gene mutations 
in OCM pathway including methylenetetrahydrofolate 
reductase (MTHFR) 677 (rs1801133), MTHFR 
1298 (rs1801131), methionine synthase (MTR) 2756 
(rs1805087), methionine synthesis reductase (MTRR) 66 
(rs1801394), and dihydrofolate reductase (DHFR) 19bp 
(rs70991108) affect the folate-mediated pathway and 
could subsequently result in aberrant methylation and 
disruption of DNA synthesis and repair, thereby increasing 
the risk of BC [9, 11]. Therefore, polymorphism-mutations 
of these five genes in the OCM pathway can affect 
epigenetic modification wherein aberrations such as gene-
locus hypermethylation resulting to silencing of tumor 
suppressor genes [12, 13] or hypomethylation of certain 
genes and repetitive sequences can lead to cancer [14]. 
Global hypomethylation increased with age, linked to 
genomic instability and activation of oncogene expression 
[15–17]. In summary, gene mutations in the OCM pathway 
affected DNA methylation by disrupted epigenome that 
led to carcinogenesis by inhibiting the normal cellular 
differentiation processes [18].

MTHFR gene affects MTHFR key enzyme in folate 
metabolism [19]. It irreversibly catalyzes the conversion 
of 5,10-methylene tetrahydrofolate (MTHF) to 5-MTHF 
or methyl folate, the primary circulatory form of folate 
and a carbon donor for remethylation of homocysteine 
to methionine. MTR secretes MTR enzyme requiring 
methylcobalamin (methyl B12) for activity and catalyzes 
the remethylation of homocysteine to methionine. MTR 
polymorphisms increased homocysteine levels [20–22]. 
Furthermore, MTRR produces an enzyme that activates 
cobalamin-dependent methionine synthase [23, 24] 
for the biosynthesis of methionine, the precursor for 
methylation reactions, and regeneration for nucleotide 
biosynthesis [21, 25]. In addition, DHFR catalyzes the 
reduction of dihydrofolate to tetrahydrofolate (THF) and 
plays an essential role in cellular metabolism and growth 
by shuttling the methyl group with the use of THF for 
synthesis of essential metabolites [26, 27]. Therefore, 
gene polymorphisms in the OCM pathway can decrease 
supplies of metabolites and cofactors such as folate and 
B-vitamins to increase BC risk [28]. Mutation on MTHFR 
677 (homozygote 677TT with 70% and heterozygote 
677CT with 35% loss of function) and MTHFR 1298 
(homozygote 1298CC with 30% and heterozygote 
1298AC with 15% loss of enzymatic function) increased 
plasma homocysteine levels [29, 30]. Homocysteine may 

have direct toxic effects on the vasculature [31], embryo 
development [32], cardiovascular [33], and pregnancy 
[34]. Individuals with MTHFR mutation deficiency 
presented disrupted methylation [35] and gene expression 
to influence carcinogenesis [19, 36].

On the lifestyle factors, BC risk was increased 
among women who consume alcohol [37]. Heavy alcohol 
consumption interfered with folate absorption, enhance 
urinary folate excretion, and inhibit enzymes pivotal in 
OCM pathway [38, 39]. Chronic alcohol consumption 
led to significant reductions in S-adenosylmethionine 
level, thereby contributing to DNA hypomethylation. 
In addition to altered carbohydrate metabolism, 
induction of cell death, and changes in mitochondrial 
permeability transition, alcohol-induced metabolism-
related changes led to aberration of epigenetic regulation 
of gene expression leading to carcinogenesis [40, 41]. 
Furthermore, alcohol intake may contribute to the risk of 
obesity [42]. In postmenopausal women, a higher body 
mass index (BMI) was associated with an increased risk 
of BC [43, 44]. Incidence of low levels of micronutrients 
including folate was most common among overweight and 
obese women [45] with chronic low-level inflammation, 
which over time can cause DNA damage that leads to 
chronic diseases. Adipocytes and adipose-derived stem 
cells enter the cancer microenvironment that could 
enhance protumoral effects; thereby, promoting tumor 
growth and development [46, 47]. Postmenopausal women 
who drink alcohol exhibited increased circulating blood 
estrogen compared to non-drinkers, with alcohol-mediated 
elevation of serum estrogen being positively associated 
with BC [48, 49]. Therefore, age with postmenopausal 
status, polymorphisms of genes in the OCM pathway and 
health behaviors such as low folate intake, high fat diet, 
increased alcohol consumption, and high BMI may be 
associated with the development of BC [2, 46–49].

In summary, identifying gene environment 
interactions and modifiable risk factors interacting with 
the genes in the OCM is a valuable measure in cancer 
prevention [50]. Therefore, the purpose of this study 
was to examine the gene-environmental factors affecting 
the risks of BC in a diverse sample. In this study, we 
used three phases of data analyses: data visualization 
and identification, data reduction, and model building 
to validate the predictive models [51–54]. We used the 
ensemble method and generalized regression (GR) models 
to cross-validate the prediction results [55–58].

RESULTS

Characteristics of study subjects

We recruited a total of 80 participants (40 
BC cases and 40 matched family/friend controls) in 
southern California. Table 1 presents the comparisons of 
demographic [59] and lifestyle metrics [60–63] between 
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the control and the BC groups. A significant finding was 
difference in age between groups. The BC group was 
significantly older than the control group (p = 0.001). 
There was no significant difference between the control 
and cancer groups on ethnicity, BMI status, alcohol 
consumption, and smoking. These factors were compared 
across the racial-ethnic groups (Supplementary Table 
1). The results showed that the Black subgroup had the 
highest BMI, overweight and obese category compared 
to the other subgroups (p <0.0001). More Caucasians 
consumed alcohol than the other three racial groups (p 
<0.0001).

Table 2 presents the comparisons of gene 
polymorphisms between the control and the BC groups. 
Between the two groups, the total gene polymorphism-
mutations of the five chosen genes in the OCM pathway 
ranged from 0 to 7 in control group and 1-5 in BC group. 
Wild type and polymorphism-mutations per gene were 
scored, i.e. wild type was scored “0”, heterozygote was 
scored “1” and homozygote was scored “2”, with a 
total possible maximum score of 10 for the five genes 
combined. To decrease the degrees of freedom and 
increase the power in the statistical testing, total mutation 
score was recoded into two groups using the median split 
between less than 3 and ≥ 3 in the predictive modeling. 
MTHFR enzyme deficiency was calculated by combining 
the loss of enzymatic functions from polymorphisms 
of MTHFR 677 (loss of 35% for each of the two T 

polymorphic alleles) and MTHFR 1298 (loss of 15% 
for each of the two C polymorphic alleles) resulting to 
a total score of both MTHFR 677 and 1298 deficiency 
(possible maximum score of 100) [29, 30] (Table 2). No 
significant difference between the control and BC groups 
was noted for each gene alone and score on the MTHFR 
deficiency. There were no significant differences on each 
of the five gene polymorphisms between the control and 
BC groups. However, presented the directions of genes 
polymorphism-mutations of case and control groups. 
MTR2756, total MTHFR deficiency, and DHFR19bp 
showed the trend of increased polymorphism-mutations 
in BC group.

Across four race-ethnic groups, there were 
significant differences on the presentation of two gene 
polymorphisms, MTHFR 677 and MTHFR 1298 (p 
<0.05) (Supplementary Table 2). The distributions of 
the five gene polymorphisms on the control and cancer 
groups and four race-ethnic subgroups are further 
presented in Table 3. We checked the Hardy-Weinberg 
Equilibrium (HWE) analysis of these five genes to 
assess the distribution equilibrium of the evolutionary 
mechanisms in population genetics associated with 
factors such as population migration or stratification and 
disease association [64]. MTHFR 677 and DHFR 19bp 
had significant HWE with disequilibrium for total case 
and control groups (p <0.05); however, they were not 
significant on racial-ethnic subgroups.

Table 1: Comparisons on demographic and lifestyle factors between control and breast cancer groups

Controls (N = 40)
n (%)

Cases (N = 40)
n (%)

p

Age in years (M±SD) 44.8±15.89 61.7±8.87 0.001

Ethnicity

Asian 16 (40) 16 (40) 1.000

Caucasian 11 (27.5) 11 (27.5)

Hispanic 10 (25) 10 (25)

African American 3 (7.5) 3 (7.5)

BMI status

WNL 19 (47.5) 20 (50) 0.8230

Overweight and Obese 21 (52.5) 20 (50)

Alcohol drinker

No 20 (50) 23 (57.5) 0.5011

Yes 20 (50) 17 (42.5)

Smoking

No 40 (100) 38 (95) 0.1521

Yes 0 (100) 2(5)

Note: WNL: within normal limit (18.5-24.9).
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On the dietary intake of major food groups, 
there was no significant difference between control 

and BC groups (Supplementary Table 3A). Notably, a 
trend of higher carbohydrate, total and saturated fat, 

Table 2: Comparisons on gene polymorphisms between control and breast cancer groups

Controls (N = 40)
n (%)

Cases (N = 40)
n (%)

p

MTHFR 677

0 (CC) 24 (60) 25 (62.5) 0.8185

1 (CT) 11 (27.5) 9 (22.5)

2 (TT) 5 (12.5) 6 (15)

MTHFR 1298

0 (AA) 22 (55) 23 (57.5)

1 (AC) 17 (42.5) 13 (32.5)

2 (CC) 1 (2.5) 4 (10) 0.8217

MTHFR deficiency

0% 12 (30) 10 (25) 0.4925

15% 11 (27.5) 11 (27.5)

30% 1 (2.5) 4 (10)

35% 5 (12.5) 7 (17.5)

50% 6 (15) 2 (5)

70% 5 (12.5) 6 (15)

5.5 ± 24.28
(0 - 70)

26.25 ± 23.47
(0 - 70)

≥ 50% 11 (27.5) 8 (20)

MTR 2756

0 (AA) 30 (75) 26 (65) 0.3291

1 (AG) 9 (22.5) 11 (27.5)

2 (GG) 1(2.5) 3 (7.5)

MTRR 66

0 (AA) 15 (37.5) 19 (47.5) 0.3656

1 (AG) 20 (50) 16 (40)

2 (GG) 5 (12.5) 5 (12.5)

DHFR 19bp

0 (Ins/Ins) 11 (27.5) 7 (17.5) 0.2842

1 (Ins/Del) 20 (50) 25 (62.5)

2 (Del/Del) 9 (22.5) 8 (20)

Total mutations (0-10)

≥ 3 15 (18.75) 16 (20) 0.8185

M±SD 2.97 ± 1.53
(0 – 7)

3.12 ± 1.34
(1-5)

0.6370

0=Wild type, 1=heterozygote, 2=homozygote
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and cholesterol intake was identified in the control 
group than the case group. On the subgroup analysis 
(Supplementary Table 3B), a noticeable trend was that 
Black (100%) and White (73%) subgroups tend to eat 

saltier food than the Hispanic (55%) and Asian (50%) 
subgroups. In addition, Black (67%) and White (41%) 
subgroups had consumed higher total fat intake than 
Hispanic (30%) and Asian (19%) subgroups. On the 

Table 3: Distribution of gene polymorphisms per control and breast cancer groups across race-ethnic groups

Genotypes
Controls Cases

0 (%) 1 (%) 2 (%) p (HWE) 0 (%) 1 (%) 2 (%) p (HWE)

MTHFR 677 CC CT TT CC CT TT

Total 24 (60) 11 (27.5) 5 (12.5) NS 25 (62.5) 9 (22.5) 6 (15) 0.0081

Asian 14 (87.5) 2 (12.5) 0 (0) NS 13 (81.25) 3 (18.75) 0 (0) NS

White 6 (54.55) 3 (27.27) 2 (18.18) NS 6 (54.55) 3 (27.27) 2 (18.18) NS

Hispanic 2 (20) 6 (60) 2 (20) NS 3 (30) 3 (30) 4 (40) NS

Black 2 (66.67) 0 (0) 1 (33.33) NS 3 (100) 0 (0) 0 (0) --

MTHFR 1298 AA AC CC AA AC CC

Total 22 (55) 17 (42.5) 1 (2.5) NS 23 (57.5) 13 (32.5) 4 (10) NS

Asian 7 (43.75) 8 (50) 1 (6.25) NS 6 (37.5) 7 (43.75) 3 (18.75) NS

White 6 (54.55) 5 (45.45) 0 (0) NS 6 (54.55) 4 (36.36) 1 (9.09) NS

Hispanic 7 (70) 3 (30) 0 (0) NS 9 (90) 1 (10) 0 (0) NS

Black 2 (66.67) 1 (33.33) 0 (0) NS 2 (66.67) 1 (33.33) 0 (0) NS

MTR 2756 AA AG GG AA AG GG

Total 30 (75) 9 (22.5) 1 (2.5) NS 26 (65) 11 (27.5) 3 (7.5) NS

Asian 13 (81.25) 3 (18.75) 0 (0) NS 11 (68.75) 3 (18.75) 2 (12.5) NS

White 6 (54.55) 4 (36.36) 1 (9.09) NS 7 (63.64) 3 (27.27) 1 (9.09) NS

Hispanic 10 (100) 0 (0) 0 (0) -- 9 (90) 1 (10) 0 (0) NS

Black 1 (33.33) 2 (66.67) 0 (0) NS 1 (33.33) 2 (66.67) 0 (0) NS

MTRR 66 AA AG GG AA AG GG

Total 15 (37.5) 20 (50) 5 (12.5) NS 19 (47.5) 16 (40) 5 (12.5) NS

Asian 9 (56.25) 7 (43.75) 0 (0) NS 7 (43.75) 9 (56.25) 0 (0) NS

White 3 (27.27) 5 (45.45) 3 (27.27) NS 2 (18.18) 6 (54.55) 3 (27.27) NS

Hispanic 3 (30) 5 (50) 2 (20) NS 7 (70) 1 (10) 2 (20) NS

Black 0 (0) 3 (100) 0 (0) -- 3 (100) 0 (0) 0 (0) NS

DHFR 19bp II ID DD II ID DD

Total 9 (22.5) 20 (50) 11 (27.5) .0104 8 (20) 25 (62.5) 7 (17.5) 0.0016

Asian 4 (25) 10 (62.5) 2 (12.5) NS 3 (18.75) 9 (56.25) 4 (25) NS

White 4 (36.36) 4 (36.36) 3 (27.27) NS 3 (27.27) 7 (63.64) 1 (9.09) NS

Hispanic 2 (20) 6 (60) 2 (20) NS 1 (10) 6 (60) 3 (30) NS

Black 1 (33.33) 0 (0) 2 (66.67) NS 0 (0) 3 (100) 0 (0) --

Note: HWE: Hardy-Weinberg Equilibrium, NS: Not significant, --: cannot be calculated; HWE Calculator:  
https://wpcalc.com/en/equilibrium-hardy-weinberg/
0=Wild type, 1=heterozygote, 2=homozygote

http://www.koonec.com/k-blog/2010/06/20/hardy-weinberg-equilibrium-calculator/
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saturated fat intake, Asians (78%) had the lowest intake 
compare to the other racial groups; but the highest in 
carbohydrate intake. Interestingly, Asians (59%) had the 
least folate intake compared to Hispanic (45%), White 
(27%) and Black (17%) subgroups.

Most influential predictors per category

Influential predictors were identified into three 
categories: genetic, demographic and lifestyle, and dietary 
intake factors. Individual predictors were selected by 

Figure 1: Genes in prediction of breast cancer: (A) per single gene profiler, (B) examples on interaction profiles of genes and breast cancer.
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using tree methods to build models. From the rank order 
of column contributions, the most influential variables 
were selected using the bootstrap forest method [51–54]. 
The column contribution was presented using the G2 
statistics as classification accuracy, which was derived 
from the conventional likelihood ratio X2 statistic, but 
unlike X2 analysis, G2 results are not subject to the sample 
size effects. X2 is a test of goodness-of-fit between the 
expected count and the actual account. By the same token, 
G2 indicates how well the expected count and actual count 
are classified into that group. The most crucial genetic 
predictor of cancer (Supplementary Table 4A) appeared 
to be MTR 2756 polymorphism-mutations. On the rank 
order of importance on the dietary factor (Supplementary 
Table 4B), saturated fat ranked the highest followed by 
fiber, carbohydrates, total fat, and sodium intake.

Predictors for gene-environment interactions

Most significant variables for gene-environment 
interactions were identified and taken into consideration. 
Table 4 presents the rank order of important factors by 
G2 and portion of combined bootstrap forest analyses of 
all three factors (genetic, demographic and lifestyle, and 
dietary intake). It is noteworthy that the top predictors 
other than the age are modifiable factors (saturated fat, 
alcohol intake, and BMI). Gene polymorphisms of MTR 
2756, DHFR 19bp, total MTHFR deficiency, and MTRR 
66, which are non-modifiable, are also included as primary 
top predictors.

Figure 1A further illustrates the profilers of the 
five genes and MTHFR enzyme deficiency score in 
association with BC risk, and Figure 1B, the examples 
of interaction profiles of these gene parameters with 
the BC risk. It is worthy to point out that while MTHFR 
677 and 1298 gene polymorphisms had downward 
trend association with the BC risk, the MTHFR 
enzyme deficiency score presented upward or positive 
correlation in association with the BC risk (Figure 1A). 
The interaction profilers for the associations of these 
gene parameters with BC risk as examples presented in 
Figure 1B were all parallel lines, indicating no 2-way 
interactions were noticeable for these gene parameters in 
association with BC risk. Figure 2A presents the profilers 

of MTR 2756 polymorphism-mutations, BMI, alcohol 
drinking, and age as predictors for BC, and Figure 2B for 
the examples of interaction profiles of these factors. The 
lines of association with BC risk were crossing and non-
parallel for MTR 2756 with BMI, and BMI with alcohol 
drinking (Figure 2B) for gene-environment interactions.

The role of important predictors in cancer was 
further examined by race-ethnic subgroups to explore 
potential actionable factors per subgroup. For all race-
ethnic groups, age had been the primary predictor for 
gene-environment interactions for BC risk (Supplementary 
Table 4C-4E). Supplementary Table 4C showed that for 
Asians (n=32), the second predictor was total MTHFR 
deficiency and followed by BMI status, alcohol 
consumption, saturated fat intake, MTRR 66, MTR 2756, 
and DFHR 19bp. For Whites (n=22), the most important 
variables after age was total MTHFR deficiency, then 
followed by saturated fat, DFHR 19bp, MTR 2756, MTRR 
66, BMI, and alcohol use (Supplementary Table 4D). 
For Hispanics (n=20), the second predictor after age was 
MTRR 66, saturated fat, MTHFR deficiency, BMI, MTR 
2756, alcohol use, and DHFR 19bp (Supplementary Table 
4E). Considering that there were only 6 Black participants, 
there was not enough variation for resampling to construct 
a model using the bootstrap forest method.

Predictive modeling for gene-environment 
interactions

Using the most influential variables (Table 4), two 
GR models were developed using Leave-One-Out (LOO) 
cross validation methods to predict the probability of BC. 
GR is also known as penalized regression. As the name 
implies, the modeling process penalizes complicated 
models to avoid overfitting. Hence, compared with 
conventional regression modeling, GR tends to yield 
an optimal model. In each case, the models were first 
compared to a logistic regression (LR) model with 
validation for a baseline (see Method section for further 
details).

Table 5 presented model 1 in the left panel, the 
parameter estimates along with the associated p-values 
for the baseline LR results with validation. There was 
no significant interaction noted. On the contrary, the 

Table 4: Selected predictors of breast cancer for gene-environment interactions
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regularized parameters remaining in the GR Elastic 
Net LOO model as shown in the right panel of Table 5 
demonstrated significant interactions with BMI and 
alcohol use (p = 0.0027), and between BMI and MTR 2756 
(p = 0.0090), in addition to alcohol use as a significant 
predictor (p = 0.0126). Notably, BMI as a predictor was 
eliminated from the model with LOO model as indicated 
with zero value for the estimate (see Method section for 

the zero value in the LOO models). The misclassification 
rate for Elastic Net LOO validation shown in Table 5 on 
the right had a misclassification rate of 0.2785 and the 
baseline LR model on the left had a misclassification 
rate of 0.3000. The validation Elastic Net models 
outperformed the LR model with validation, with lower 
misclassification rate, and more significant parameters. 
Akaike’s information criterion with correction (AICc) was 

Figure 2: Gene-environment Interaction: (A) prediction profiler, (B) examples on interaction profiles.
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70.35 for the baseline logic regression model and 117.96 
for the GR Elastic Net AICc validation model.

The predictive performance for the Elastic Net 
models can be further characterized by examining the 
receiver operating characteristic curve and area under the 
curve (AUC) (Figure 3). The AUC was shown in Figure 3 
with the right panel showing the AUCs of Elastic Net with 
LOO model as 0.7532 (higher and better performance), 
0.7469 for GR Elastic Net AICc validation model, and 
0.7240 for the LR model in the left panel with validation 
(lower). Thus, the AUCs of the GR Elastic Net models 
outperformed the LR model.

When age was added into the predictive models 
(Table 6), it presented as a consistent significant predictor 
validated by LR (p = 0.0001) and GR Elastic Net (p 
<0.0001) models. The same significant interaction term 
as in Table 5 was noted with BMI and alcohol use (p = 
0.0152), in addition to alcohol as a significant predictor 
(p = 0.0461). MTR 2756 and BMI were eliminated from 
the model as indicated with zero value for the estimate. 
The misclassification rate for Elastic Net LOO validation 
shown in Table 6 on the right had a misclassification 

rate of 0.2278, and the baseline LR on the left had a 
misclassification rate of 0.3000. The Elastic Net validation 
models outperformed the LR model with validation with 
lower misclassification rate, AUC, and more significant 
parameters. The AUCs (Figure 4) were 0.8455 for the 
Elastic Net LOO model (right panel), 0.8313 for the 
Elastic Net AICc validation model (middle panel), and 
0.7656 for LR model (left panel).

To illustrate the effects of different factors on these 
prediction models, Supplementary Table 5 presents a series 
of prediction models by progressively including additional 
factors from single or individual factors to the multiple 
factors included in the final model as presented in the 
Table 6. The p value for the significance on the parameter 
estimates, misclassification rates, AICc, and AUCs of 
individual variables (i.e. age, BMI, alcohol consumption, 
and MTR 2756) and their significant interactions were 
included in these illustrative progressions. As shown in 
the Supplementary Table 5, age was the only consistent 
significant predictor of BC without the interaction terms 
included in the models. Once the interactions were included, 
the additional significant factors emerged as presented 

Table 5: Baseline logistic regression model and generalized regression Elastic Net model on the predictors of breast 
cancer from gene-environment interactions

Logistic Regression Original 
Model with Validation

Generalized Regression Elastic
Net Model

With AICc Validation With Leave-One-Out 
Validation

Parameters Estimate p (X2) Estimate p (X2) Estimate p (X2)

(Intercept) 0.0025 0.9986 -0.2270 0.8445 -0.5199 0.5019

BMI * Alcohol 2.5212 0.1176 2.8496 0.0119 2.8879 0.0027

BMI * MTR 
2756 -2.3841 0.1659 -1.9493 0.1314 -2.4105 0.0090

Alcohol -1.9568 0.1834 -2.0448 0.0306 -2.1418 0.0126

Saturated Fat 0.6984 0.2954 0.9178 0.0868 0.9299 0.0868

MTR 2756 1.6116 0.3091 1.1838 0.3044 1.4942 0.1146

MTHFR 1298 * 
MTRR 66 1.1764 0.3459 1.9493 0.0659 1.2469 0.2189

MTRR 66 0.0372 0.9675 -0.7873 0.3131 -0.2323 0.7576

MTHFR 1298 -0.4192 0.6226 -0.3404 0.6572 -0.0551 0.9438

BMI -0.3813 0.7847 -0.2402 0.8473 0 1.0000

Misclassification 
Rate 0.3000 0.3125 0.2785

AICc 70.35 117.96 n/a

Area under the 
curve 0.7240 0.7469 0.7532

Note. AICc: Akaike’s information criterion with correction.
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in the final model (Table 6). The misclassification rates 
were lowest and best in the final model across LR (0.3) 
and GR models (0.2278 with LOO and 0.2375 with AICc 
validation) as compared to the previous models including 
the lesser number of factors. AICc (the lower the fitter) was 
lowest with age as the single predictor in the final model 
(Table 6) compared to the other models of multiple factors. 
AUCs were highest (best performance) in the final model 
(Table 6) compared to other models including lesser number 
of factors (Supplementary Table 5).

These predictive models were attempted per race-
ethnic subgroups. However, we did not observe stable 

results because of the limited number of samples per race-
ethnic subgroups. Therefore, subgroup analysis on the 
predictors of BC from gene-environmental interactions 
were not presented.

DISCUSSION

This is the first study to present the distributions 
of the genotype alleles of the five genes in the OCM 
pathways for BC risk among four race-ethnic groups 
(Asian, White Hispanic, and Black). The four gene 
polymorphisms (MTHFR 677 and 1298, MTR 2756, 

Figure 3: Receiver operating characteristic curve and area under the curve (AUC) for baseline logistic regression 
model (left panel), Elastic Net with Akaike’s information criteria with correction validation model (middle) and 
Leave-One-Out validation model (right panel) on the predictors of breast cancer from gene-environment interactions.

Figure 4: Receiver operating characteristic curve and area under the curve (AUC) for baseline logistic regression 
model (left panel), Elastic Net with Akaike’s information criteria with correction validation model (middle) and 
Leave-One-Out validation model (right panel) on the predictors of breast cancer from gene-environment interactions 
including age as a factor.
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and MTR 66) had been presented in previous BC studies 
and meta-analyses [5, 8, 9, 20, 26, 36]. Most studies 
had reported the polymorphism-mutations of the genes 
involved in the OCM as risk factors for BC, although 
inconsistencies on the findings were noted due to multiple 
factors affecting carcinogenesis. We had included DHFR 
19bp deletion as an additional gene in the pathway. 
DHFR 19bp in the folate methylation pathway has not 
been presented for the BC cases for various race-ethnic 
groups. These four race-ethnic groups presented the 
different polymorphism patterns for each of the five 
genes. Therefore, our findings added the evidence for 
different presentations of the gene polymorphisms in 
the OCM pathway among various race-ethnic groups. 
The composite scores of the total mutations of the 
five genes associated in the OCM was higher in BC 
group than the control group. In addition, increase 
polymorphism-mutations in MTR 2756, total MTHFR 
deficiency, and DHFR 19bp in BC group (Figure 1A and 
1B) support the evidence on the aberrant modulation 
of DNA methylation by gene polymorphisms involved 
with the OCM. This aberration leads to disruption of the 
epigenome and considered the underlying mechanism of 
BC development [9, 28, 36]. The gene polymorphism-
mutations presented in our study are noted to be common 
in the general population. The direction of the risk alleles 
may be weaker or more conservative given that some of 
the family case-control pairs share same genetic heritage.

We presented the novel gene-environment 
interactions and predictors of BC by including the key 
genes in the OCM pathways, along with demographic 
and lifestyle factors using the ensemble method and GR 
predictive modeling to cross validate the results. Age was 
the strongest predictor for BC in the total sample and 
race-ethnicity groups as BC cases were older compared 
to controls. Age is a well-recognized risk factor for cancer 
development as aging process results in deterioration of 
many biological processes including DNA methylation 
[17, 18]. Interestingly, more overweight and obese as 
well as higher alcohol consumption were noted in the 
control group than the BC group (Figure 2A and 2B). 
This could be explained by the younger participants with 
food preferences of higher fat, carbohydrate, and alcohol 
intake. As noted on the lifestyle and dietary factors, all 
BC cases were cancer survivors and majority had changed 
their lifestyle by limiting their alcohol intake and choosing 
healthier diet [50].

Using the ensemble method, the most influential 
gene-environmental factors were polymorphisms of 
MTR 2756, age, alcohol consumption, and BMI for 
the total sample. Utilizing the most influential factors, 
the two models, LR and GR models using LOO cross 
validation methods had presented the novel gene-
environment interactions and predictors of BC. In the 
model, BMI status was significantly interactive with 
both alcohol and MTR 2756 polymorphisms. Previous 

Table 6: Baseline logistic regression model, generalized regression Elastic Net model (with AICc and Leave-One-
Out-Validation) on the predictors of breast cancer from gene environment interactions including age as a factor

Logistic Regression Original 
Model with Validation

Generalized Regression Elastic 
Net Model

With AICc Validation With Leave-One-Out 
Validation

Parameters Estimate p (X2) Estimate p (X2) Estimate p (X2)

(Intercept) 1.7735 0.2386 1.2899 0.1972 1.9324 0.0027

Age -2.8420 0.0001 -2.2898 <0.0001 -2.5734 <0.0001

BMI*Alcohol 2.5349 0.1595 1.4491 0.2790 2.1891 0.0152

Alcohol -2.2623 0.1675 -1.0589 0.3814 -1.8443 0.0461

BMI*MTR 2756 -2.3623 0.2526 -0.8735 0.1162 -1.1353 0.0581

MTR 2756 1.3848 0.4603 0 1.0000 0 1.0000

BMI 0.1668 0.9215 0.2466 0.8302 0 1.0000

Misclassification 
Rate 0.3000 0.2375 0.2278

AICc 50.10 94.79 n/a

Area under the 
curve 0.7656 0.8313 0.8455

Note. AICc: Akaike’s information criterion with corrections.
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studies presented possible obesity-promoting effects of 
energy intake from alcohol use [42]. On the BMI and 
MTR 2756 interaction, individuals who were overweight 
and obese had higher odds of low folate intake compared 
to normal-weight adults [45]. Low folate intake affects 
the enzymatic activity of MTR 2756 in maintaining 
adequate intracellular folate, methionine, which is 
an essential amino acid involved in DNA methylation 
[20]. Previous studies had presented gene-environment 
interactions associating genes in the OCM pathways with 
folate deficiency and BC [36, 10, 20, 26]. This study 
has presented new and novel results using predictive 
modeling and validation analytics on the interactions 
among predictors affecting epigenetic mechanisms. We 
presented the very first study using these new analytics 
to triangulate and cross-validate the findings using both 
conventional inferential statistics as well as ensemble 
method and GR models to predict BC risk for prevention 
efforts.

In addition to the genetic factors in the OCM 
pathways, our results point to the list of modifiable 
lifestyle and environmental factors [60–63] in relation to 
the gene-environment interactions in the prevention of 
BC. We presented the top modifiable factors in this study 
for BC prevention, including BMI status and alcohol use. 
Therefore, weight management can be further examined in 
future intervention studies associating gene-environment 
interactions for BC prevention. Additionally, future 
research can be designed to examine other factors such 
as alcohol use in association with gene-environment 
interactions for BC prevention. Our sample size was 
limited with a total of 80 participants; 40 BC cases and 40 
matched family/friend controls. For the subgroup analysis 
utilizing ensemble method of bootstrap forest, we did 
not have sufficient number of participants for the Black 
subgroup to generate the list of most influential predictors. 
For the predictive modeling construction using GR Elastic 
Net LOO model, we did not have sufficient number of 
samples for any of the four racial-ethnic subgroups to 
generate the stable results. Therefore, further studies with 
larger samples are needed to generate stable results and 
to further validate these findings for various racial-ethnic 
groups.

MATERIALS AND METHODS

Study population and setting

We included 80 cases (40 BC cases and 40 matched 
family/friend controls) by accessing BC case dataset of 
southern California registered at the California Cancer 
Registry (CCR) and additional cases through case 
referrals by the participants. The study was approved 
by the appropriate Human Subjects Institutional Review 
Boards (IRB) from the California State Committee for 

the Protection of Human Subjects for data access through 
the CCR, and from the local educational institutions. 
To qualify for the study, BC cases must be: a) not at 
the terminal stage of cancer or expecting death within 6 
months, b) 18-80 years of age, c) have a family member 
living with or nearby the case for over 1 year. The controls 
must be: 1) no history of cancer, b) 18-80 years of age, c) 
living with or nearby the case for over 1 year. Both the 
case and the control have adequate cognitive and mental 
capacities, and were willing to participate in the interviews 
and provided salivary sample for genotyping data 
collection. BC cases were survivors, having diagnosed 
with BC for at least two years by the time CCR released 
their data. BC cases and controls were screened based on 
the inclusion criteria.

Given the diverse population in southern California, 
we targeted to recruit at least 5 families per racial-ethnic 
group to represent the proportions of various populations 
at southern California. Following the approval of the 
IRBs, BC cases were screened and randomly selected 
by systematic stratification based on the racial-ethnic 
groups from the roster databases provided by the CCR. 
The qualified cases were contacted through the established 
procedures as required by the CCR with an introduction 
letter followed with phone contacts. Family members/
friends who resided with or near the BC cases were 
recruited along with the cases. Home visit was done for 
data collection.

Genotyping data

Data sent to the laboratories were de-identified for 
subjects. Laboratory staff members were blinded to the 
case-control and other status of the samples to enhance 
the objectivity of laboratory analyses. The specimens 
were stored on ice and sent in containers with dry ice via 
express mail to the laboratory following data collection. 
Upon arrival at the laboratory, specimens were kept 
frozen in deep freezer at -80°C freezer until analysis. 
Genotyping procedures were described elsewhere 
earlier. Briefly, genomic DNA was isolated from salivary 
samples using the SK-1 swab and Isohelix collection 
tubes with dry capsules (Boca Scientific, Boca Raton, 
FL, USA). The Taqman technique [65–66] was used 
for genotyping of the gene polymorphisms using allele 
specific fluorescent probes with a StepOnePlus™ Real-
Time PCR System (Thermo Fisher Scientific, Waltham, 
MA, USA). Quality control was strictly conducted 
with four duplicate positive controls and four negative 
controls loaded in each of 96-well plates. Additionally, 
genotyping assays were repeated with 10% of the 
samples and genotyping results were in 100% agreement 
for the repeated tests. The results of genotyping on five 
genes were shared with the participants within 6 months 
following the data collection.
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Demographic and lifestyle data

Participants were interviewed with items of 
standardized instruments for health-related lifestyle 
status [60]. Family history, cancer risks, activities, and 
demographics were collected using the items summarized 
from the Centers for Disease Control and Prevention 
(CDC) 1999-2012 National Health and Nutrition 
Examination Survey and National Health Interview 
Survey [61]. Community environment and health were 
collected using the items listed in the integrated prevention 
framework of Institute of Medicine [62] and WHO [63] for 
cancer prevention. The family pedigrees were completed 
with family history data using the standard process 
established by the Coalition for Health Professional 
Education in Genetics [59].

Data analysis

Our data analysis followed three phases of data 
visualization and identification, data reduction, and 
model building using SAS JMP Pro13 [67, 68]. In the 
first stage of data visualization and identification, we used 
bootstrap forest or bagging, i.e. bootstrap aggregating, 
which is one of the most popular ensemble methods 
[51–54]. The ensemble method is a resampling technique 
that synthesizes analyses of many subsets of the original 
data. This approach is superior to conventional regression 
modeling because ordinal least square regression or LR 
analyses tend to yield an overfitted model. Numerous 
studies have confirmed that the ensemble approach 
outperforms any single model, such as regression or 
univariate statistics [68–70]. In addition, conventional 
statistical procedures are limited by the sample size. If 
the number of parameters to be estimated exceeds the 
degrees of freedom, the regression model would be highly 
unstable. The ensemble method is based on machine 
learning, in which datasets are partitioned and analyzed 
by different models [71]. Each model is considered a weak 
learner and the final solution is a synthesis of all these 
weak learners. When different models are generated by 
resampling, inevitably, some are high bias model (underfit) 
while some are high variance model (overfit). In the end, 
the ensemble cancels out these errors. Specifically, each 
model carries a certain degree of sampling bias, but finally 
the errors also cancel out each other [72].

In the second stage, dimension or data reduction, 
our strategy was to identify the most influential predictors 
within three categories of genetic, demographic and 
lifestyle, and dietary factors (as indicated by the health 
metrics). To select the most influential predictors within 
each category, we used the criteria of column contribution 
(variables of importance). Using the bootstrap forest 
ensemble method, G2 and portion of column contribution 
per variables were used to present the rank order of 
importance.

In the final stage of model prediction, we used GR to 
obtain a smaller prediction error [68]. The methodology of 
JMP Pro allows for several classes of modeling estimation 
methods including Lasso, Forward Selection and Elastic 
Net and several validation methods including the one we 
chose of LOO cross validation. This validation technique 
has been shown to be effective for small data sets. Model 
performance was assessed using misclassification rate 
(smaller is better), AICc (smaller is fitter), and AUC 
(larger is better) [73]. GR is also known as penalized 
regression, meaning that the variable selection process 
penalizes complexity. To get the optimal model, the 
algorithm imposes a penalty on the model when redundant 
predictors are included. When there are several collinear 
predictors, LASSO select just one and ignore others, or 
zero out some regression coefficients. The Ridge method 
counteracts against collinearity and variance inflation by 
shrinking the regression coefficients towards zero, but 
not exactly zero. The Elastic Net method combines the 
penalties of the LASSO and Ridge approaches. Unlike 
linear least squares in estimating the unknown parameters 
in a linear regression model, GR could simply zero out 
certain unused predictors [74]. In this case the p value 
at most could only be.9999, but not exactly one in linear 
regression model. However, when all permutations are 
exhausted, such as what was done in an exact test, the 
probability could be exactly one. In a similar vein, GR 
exhausted different paths to find the best model. When 
the full model has a mixture of important and unused 
predictors, the p value cannot be one. However, when the 
data could be perfectly described by the restricted model 
resulted from path searching, the probability of observing 
the data could be 1.

When developing a GR model for a predictive 
model the first type of model presented in JMP Pro 13 
is a LR model, because the default estimation method is 
a LR. After this default method, other model launches 
can be pursued by choosing a variety of estimation 
methods (lasso, Elastic Net and others) and associated 
validation methods [a validation column, minimum 
AICc, LOO validation and others, 72]. We chose AICc 
validation and LOO cross validation methods because 
of their effectiveness for small data sets [73]. In effect, 
the default LR method could be characterized as an 
explanatory model whereas the other GR estimation 
methods might best be characterized as a predictive model. 
An explanatory model is typically used to explain the 
association between the model parameters and the model 
response to test causal hypotheses, whereby a predictive 
model is used to predict future observations [75]. The 
nature of the model objectives (causal versus predictive) 
directly influence the underlying algorithms which can 
result in different results of models using the same set 
of initial parameters. Typically, using an explanatory 
model, the set of statistically significant parameters are 
identified for a final model. The predictive model using 
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GR will pursue methods to shrink coefficients towards 
zero in part to guard against overfitting the model. For 
model prediction in GR analysis, continuous variables are 
recoded into new dichotomous variables grouped by either 
median distribution or known score criterion of healthy 
eating.

The prediction profiler and interactive profiler can 
be used to visualize the direction of association between 
two parameters (a predictor or factor with the outcome 
variable of healthy eating status in profiler) or among three 
parameters (set of interactive variables with non-parallel 
distribution in addition to the outcome status of healthy 
eating in interactive profiler). The visualization of profiler 
and interactive profiler will enable the analyst to ask 
“what-if” questions. Specifically, the analyst manipulates 
the levels of including different variables to see how the 
model is changed. By doing so we can understand how the 
interaction of various factors affect the outcome and the 
sensitivity of the model.
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