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ABSTRACT

Despite evidences linking methylation changes in the cancer tissues, little is 
known about the methylation modification in the peripheral blood. With the current 
study, we identified differential methylation regions (DMRs) across human genome 
by collecting the blood samples of colorectal cancer (CRC) patients compared to 
that of their blood-related family who shared genetic inheritance and environmental 
influences, and unrelated obese and non-obese controls by accessing publicly 
available Gene Expression Omnibus data. We performed genome-wide analyses using 
the reduced representation bisulfite sequencing (RRBS) method covering about 25% 
of CpGs for whole human genome of the four groups (n = 5 each). In comparison to 
the non-obese controls, we observed significant DMRs in CRC for genes involved in 
tumorigenesis including MLH3, MSH2, MSH6, SEPT9, GNAS; and glucose transporter 
genes associated with obesity and diabetes including SLC2A1/GLUT1, and SLC2A3/
GLUT3 that were reported on methylation being modified in cancer tissues. In addition, 
we observed significant DMRs in CRC for genes involved in the methylation pathways 
including PEMT, ALDH1L1, and DNMT3A. CRC and family members shared significant 
DMRs for genes of tumorigenesis including MSH2, SEPT9, GNAS, SLC2A1/GLUT1 and 
SLC2A3/GLUT3); and CAMK1, GLUT1/SLC2A1 and GLUT3/SLC2A3 genes involved in 
glucose and insulin metabolism that played vital role in development of obesity and 
diabetes. Our study provided evidences that these differentially methylated genes in 
the blood could potentially serve as candidate biomarkers for CRC diagnostic and may 
provide further understanding on CRC progression. Further studies are warranted to 
validate these methylation changes for diagnostic and prevention of CRC.

INTRODUCTION

Colorectal cancer (CRC) is the third most common 
cancer among both men and women, and the third 
most common cause of cancer-related deaths [1], for 

past 4 decades in the United States. For 2018, about 
97,220 newly diagnosed CRC cases and 50,260 CRC-
related deaths were projected [2]. Genetic mutations 
and epigenetic modifications in oncogenes and/or tumor 
suppressor genes cause the development of cancer [3]. 
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Given that DNA methylation is one of the most important 
epigenetic events, the identification of CRC-specific 
methylation markers may provide new insights for better 
understanding of CRC progression and early cancer 
detection.

Methylation is a reversible attachment of a methyl 
group to a CpG dinucleotide, rendering it not being able to 
be transcribed, affected by both genetic and environmental 
factors [4–6]. In the past decade, it has become clear that 
cancer cells have aberrant patterns of DNA methylation at 
the individual CpG sites or a group of CpG sites in close 
proximity, which are denoted as differentially methylated 
cytosines (DMCs) and differentially methylated regions 
(DMRs), respectively [7–9]. For example, it has been 
reported that some genes are hyper-methylated at the 
promoter region in CRC including APC, MGMT and 
hMLH1 (see Supplementary Table 1 for the list of genes, 
full names, and gene functions presented in this paper). 
Additionally, significant associations were documented 
between DNA methylation and cancer progression, such as 
changes of DMR at the promoter region of RASSF1A gene 
in association with tumor stages [8]. Additionally, hyper-
methylation at the promoter regions of SYNE1 and FOXE1 
genes was presented in colitis-associated colorectal 
neoplasia [9]. Most of those studies were focused on 
tumor tissues to explore the associations between DNA 
methylation status and CRC as potential biomarkers. 
Tumor tissue collection would involve invasive approach 
which is not as readily accessible compared to other 
less invasive methods such as blood-based detection of 
CRC. Studies using blood-based methods, however, have 
relied on testing a limited number of pre-selected genes 
and on the use of non-quantitative detection methods, 
such as gel-based methylation-specific polymerase chain 
reaction (PCR). In the current study we identified different 
methylation patterns across the whole human genome 
covering about 25% of CpGs for whole human genome 
(see Method section), using the blood samples of CRC 
patients compared to other controls, with the reduced 
representation bisulfite sequencing (RRBS) method.

Dietary habits, life-styles and environmental agents 
contribute to epigenetic changes [10]. For example, a 
diet rich in polyunsaturated fatty acids could generate 
mutagenic free radicals and oxidative stress to cause 
epigenetic alterations [11]. Folate metabolism which also 
involves Vitamin B12 (both important factors in the one-
carbon metabolism pathway), provides the one-carbon 
units required for intracellular processes, including the 
synthesis of S—adenosylmethionine (SAM) which is 
required for DNA methylation and synthesis [12]. Besides 
genetic inheritance, family members tend to share 
similar dietary habits, life-styles, and the exposure to 
the environmental agents. These could result in common 
epigenetic alterations among the family members and 
within the family units. However, those probable common 
signatures among CRC and family members were under 

studied. In this study, in addition to the CRC cases, we 
included their blood-related family members living in 
the same household with the cases who shared not only 
genetic inheritance but also environmental influences, to 
examine genome wide methylation profiles of their blood.

Further studies have revealed a risk association for 
obesity and CRC [13]. Moreover, many studies presented 
the effects of adiposity on individual genes or methylation 
processes [14–17]. Adiposity interfered with age-induced 
epigenetic changes in methylation studies [15] and affected 
regulatory processes in epigenetic pathways [16]. Obese 
males are known to have an increased risk of developing 
CRC compared to non-obese subjects [17]. However, 
how the methylation processes affect gene ontology for 
metabolic pathways of CRC is not well documented. 
Therefore, we included the RRBS based methylation data 
of obese and non-obese people compared with the data of 
CRC cases and their blood-related family members.

In summary, with the current study, we analyzed 
genome wide methylation profiles using blood samples 
of CRC cases, their blood-related family members, also 
unrelated obese and non-obese controls. The findings 
from this study could advance our understanding of how 
shared genetic inheritance and life experiences within the 
blood-related family units and adiposity as environmental 
influences affecting the metabolic processes and 
epigenetic mechanisms of CRC, which might provide a 
better insight to the diagnosis, treatment, and prevention 
of CRC.

RESULTS

Participants

The demographic characteristics and CpG 
methylation data of the four groups are presented in 
Table 1. The subjects included 5 CRC patients and their 
blood-related family members who shared genetic heritage 
and same household without cancer from a family-based 
study. Data included RRBS data for these 5 CRC cases and 
5 family members, and RRBS data of 5 obese subjects and 5 
matched non-obese controls, based on age and gender with 
the available data, downloaded from the Gene Expression 
Omnibus (GEO) data that is available to the public (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85928, 
see Method section for additional details).

Genome-wide bisulfite sequencing

To perform a genome-wide analysis of DNA 
methylation in CRC and family control, in comparison 
to the obese and non-obese controls, we generated 20-
50 million Illumina sequencing reads for each sample 
yielding an average of 6.6 to 7.5 million CpGs which 
covered 23.2 – 26.5% of CpGs for whole human genome 
(28.3 million CpGs total) [18, 19] (Table 1). Of these, 62% 
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to 73% were successfully mapped to either strand of the 
human genome (hg19). The average sequencing depth per 
CpG was between 7x and 35x. We were able to determine 
the methylation status of approximately 1.7–2.3 million 
CpGs on CpG Islands (CGI) (Table 1).

Differentially methylated region (DMR) analysis 
in 6 regions

To identify the DMRs between one of the three 
groups [CRC (Cancer), blood-related family members 
of CRC patients (Family), and obese] with non-obese 
control, we then performed a genome-wide unbiased 
DMR detection using a complete tiling of the human 
genome in 200 bp windows. Figure 1 is a volcano plot 
showing the adjusted q-values for all DMRs versus 
mean methylation difference between each of the 
three groups and the non-obese control group. Using 
the criteria requiring an adjusted q value < 0.05 and 
difference of average methylation level > 5%, 10% or 
15%, we identified different % DMRs in each of the three 
groups when compared with non-obese controls (Table 
2 and Supplementary Figure 1). Using a 5% differential 
methylation level criterion, we identified a total of 11,866 
hyper-methylated DMRs for the Cancer/control pair, 

12,700 hyper-methylated DMRs for the Family/control 
pair, and 2404 hyper-methylated DMRs for the obese/
control pair. Whereas, when a 10% differential level was 
used, 4876, 5085, and 1291 hyper-methylated DMRs per 
pair were identified; and, with a 15% differential level, 
1865, 1784, and 592 hyper-methylated DMRs were 
noted for the three pairs (Table 2). There were decreased 
numbers of DMRs as the % differential levels increased. 
Additionally, there were 4591 hypo-methylated DMRs for 
the Cancer/control pair, 2235 hypo-methylated DMRs for 
the Family/control pair, and 1961 hypo-methylated DMRs 
for the obese/control pair, when 5% differential was used 
as the criterion. The numbers were 2451, 987, and 912 
respectively using a 10% differential criterion; and 1308, 
449, and 376 of hypo-methylated DMRs respectively for 
a 15% criterion.

Overall, there is a trend that more DMRs were 
presented for the Cancer/control compared to the 
Family/control, and least DMRs for the obese/control 
pair, indicating that there were more changes on the 
methylation for Cancer than the Family and obese groups 
compared to the non-obese controls. Those results also 
suggested that genetic and life style that were shared by 
the blood-related family members might be involved in 
methylation modifications as more DMRs were found for 

Table 1: Sample characteristicsand CpG sequencing data of the four groups

n
mean ± SD

Control
n=5

Obesity
n=5

Family
n=5

Cancer
n=5

Gender

 Female 3 2 2 5

 Male 2 3 3 0

BMI

  ≤ 30 5 0 4 3

 >30 0 5 1 2

Age 35 ± 7 45 ± 5 31 ± 13 58 ± 8

Raw reads 34,560,581 ± 
17,900,576

28,087,864 ± 
3,628,196

46,728,944 ± 
5,939,651

34,857,916 ± 
5,649,474

QC-passed reads 24,300,490 ± 
12,874,723

19,538,524 ± 
2,733,127

16,917,641 ± 
1,803,606

12,528,537 ± 
1,986,199

Mapping Efficiency 69.9 ± 1.44 69.52 ± 2.31 72.56 ± 1.95 71.93 ± 0.88

# of CpGs > 0 read 6,328,477 ± 811,790 6,436,231 ± 697,978 7,458,949 ± 494,165 6,632,163 ± 726,277

# of CpGs > 5 read 4,184,837 ± 479,512 4,291,259 ± 242,916 4,037,734 ± 415,253 3,669,350 ± 342,216

CpG Methylation % 41.7 ± 0.63 41.51 ± 1.00 45.69 ± 2.07 42.6 ± 2.87

CpG Coverage 19.60 ± 10.06 15.27 ± 2.84 9.53 ± 1.14 9.60 ± 2.36

# of CGI 24,268 ± 323 24,294 ± 348 24,483 ± 143 24,186 ± 236

# of CpGs on CGI 2,186.183 ± 281,350 2,195,293 ± 254,964 2,324,162 ± 44,814 2,266,921 ±77,206

Note. BMI: body mass index; QC: quality control; CGI: CpG Island.
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the Family/control pair compared to the obese/control pair 
(Table 2 and Supplementary Figure 1). By using a 10% 
differential criterion as the methylation difference, we 
identified the distribution of DMRs in each of the genome 
regions. Supplementary Table 2 presents that about 5-7% 
of the DMRs were presented in the promoter region. 30% 
of the DMRs in the Intron region, and 40% of the DMRs 
in the intergenic or intragenic regions. The results on these 
percent distributions were comparable for the three paired 
group comparisons.

Top 10 methylated DMRs-genes: Cancer versus 
control pair

Table 3 lists the top 10 most significant hyper-
methylated DMRs (distance to transcription start site 
[TSS] were from -1,000 to +1,000 base-pair [bp] 
DNA) for Cancer/control pair, and the annotated genes 
are PCNXL3, MIR4285, NLGN2, MIR3648, HOXA4, 
CLDN23, TONSL, GNAS, TUBB8 and MIR1247. Table 4 
lists the top 10 most significant hypo-methylated DMRs 
for Cancer/control pair (Distance to TSS are from -1,000 
to +1,000 bp). The annotated genes are SLC2A3 (GLUT3), 
LOC338817, MLH3, LRRC27, FANCG, RPSA, SLC2A1 
(GLUT1), ZFP36, HMHA1, and ARID5B. Many of those 
genes had been shown to be differently expressed in CRC 
tumor tissues, that were also presented in our study using 
the blood samples. Thus, those methylation changes could 
be potential biomarkers in the blood for CRC diagnostic 
or provide further understanding on CRC development. 
It is worthy to notice that half of the hyper-methylated 
DMRs were in the DNA coding sequence (CDS) regions 
as compared to the other half in other combination of 
promoter, five prime untranslated (Utr5) and intron 
regions; whereas, half of the hypo-methylated DMRs 
were in the promoter regions as compared to the other half 
being the combination of intron, CDS, and Utr5 regions.

Top 10 methylated DMRs-genes: Family versus 
control pair

Top 10 hyper-methylated DMRs for Family/
control pair are listed in Supplementary Table 3, the 
annotated genes are PCNXL3, RFPL2, LOC729176, 
TONSL, NLGN2, GNAS, TPRX1, EGFLAM, PRKAR1B, 

and MIR3648 (genes underlined are overlapping with 
genes found for the Cancer/control pair in Table 3). 
Supplementary Table 4 lists top 10 hypo-methylated 
DMRs for Family/control, and the related genes are 
SLC2A3, LOC338817, SLC2A1 (GLUT1), METTL16, 
SEPT9, MEG3, HMHA1, HOXB6, CPOX, and SLC2A3 
(GLUT3) (genes underlined are overlapping with genes 
found for the Cancer/control pair in Table 4). Interestingly, 
among those top 10 hyper- and hypo- methylated genes, 
several of them are overlapping with those in Cancer/
control pair, including PCNXL3, TONSL, NLGN2, GNAS, 
MIR3648, SLC2A3 (GLUT3) and SLC2A1 (GLUT1). This 
finding supports the hypothesis that blood-related family 
members shared similar epigenetic modifications with 
CRC patients, as they shared genetic heritage and might 
have also shared similar dietary habits, life style, and 
environmental agents in the same household in addition 
to their genetic makeup. It is worthy to notice that hyper-
methylated DMRs were about evenly distributed in the 
CDS, promoter, intron and Utr5 regions; whereas, half 
of the hypo-methylated DMRs were in the promoter, and 
other half in intron regions (40%), and finally in Utr5 
regions.

Top 10 methylated DMRs-genes: Obesity versus 
control pair

Supplementary Table 5 presents top 10 hyper-
methylated DMRs for obese/control pair, and the genes are 
RGPD5/RGPD8, CTDSPL2, GCNT1, LMO2, PGPEP1L, 
LDHA, CYB5R2, SPACA1, PARVG, and MSH6. Top 
10 hypo-methylated DMRs for obese/control are listed 
in Supplementary Table 6. The annotated genes are 
LHX6, INPP5F, HIGD1A, SLC2A3 (GLUT3), BLCAP, 
NNAT, MATR3, SNHG4, CCDC144B, and DTX1 (gene 
underlined is also found for the Cancer versus control pair 
in Table 4). And, SLC2A3 was also on the top 10 hypo-
methylated gene list in Cancer/control pair comparison, 
which suggested some association of obesity and CRC. It 
is worthy to notice that hyper-methylated DMRs are about 
evenly distributed in the CDS, promoter, intron and Utr5 
regions; whereas, more regions of the hypo-methylated 
DMRs are in the promoter (40%), than intron (30%) 
and other three regions of CDS, Utr5 and three prime 
untranslated (Utr3) regions (10% each).

Table 2: Number of hyper- and hypo- differential methylated regions (DMRs) per grouping comparisons at 5%, 
10%, and 15% differences

Groups Cancer/Control Family/Control Obese/Control

Differential Methylation Hyper- Hypo- Hyper- Hypo- Hyper- Hypo-

5% 11,866 4591 12,700 2235 2404 1961

10% 4876 2451 5085 987 1291 912

15% 1865 1308 1784 449 592 376
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Figure 1: Volcano plot showing adjusted q values versus mean methylation difference between groups of Cancer (red 
color), Family (teal color), and Obese (blue color) with non-obese Control.

Table 3: Top 10 hyper-methylated DNA methylated regions based on 10% difference between Cancer and Control 
(-1000 ≤ distance to transcription start site [TSS] ≤ +1000 base-pair DNA)

Gene Regions DMR location Distance 
To TSS

Methylation Difference Gene Name or Role

Start End % p q

PCNXL3 CDS 65,402,926 65,403,007 -774 39.49 3.20E-13 1.63E-11 Homeostasis/
metabolism 
phenotype

MIR4285 Utr5 101,936,380 101,936,461 13 38.53 4.00E-07 2.85E-06 MicroRNA 4285

NLGN2 CDS 7,311,698 7,311,857 198 34.28 9.29E-05 2.72E-04 Mediates cell-cell 
interactions and 
modulates insulin 
secretion

MIR3648 Utr5 9,825,819 9,826,028 0 33.93 5.21E-21 3.53E-18 MicroRNA 3648

HOXA4 CDS 27,169,637 27,170,022 378 31.68 2.04E-03 3.40E-03 Sequence-specific 
DNA binding 
transcription factor 
activity

CLDN23 CDS 8,560,299 8,560,499 635 31.19 1.56E-04 4.17E-04 Structural molecule 
activityidentical 
protein binding

TONSL CDS 145,661,276 145,661,402 -275 31.03 3.44E-10 7.12E-09 Transcription 
corepressor activity

GNAS Promoter 57,464,802 57,465,121 624 28.79 3.48E-04 8.05E-04 Insulin-like growth 
factor receptor 
binding

TUBB8 Intron 95,010 95,073 106 27.79 4.90E-04 1.07E-03 Structural 
constituent of 
cytoskeleton

MIR1247 Promoter 102,028,543 102,0l28,738 857 27.63 5.44E-05 1.75E-04 MicroRNA 1247

Note: CDS: coding DNA sequence; Utr5: five prime untranslated.
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Targeted genes

For additional genes of significance between 
Cancer versus control groups, Table 5  presents hyper-
methylated DMRs, with Figure 2 presenting the three 
most representative genes, GNAS, MSH2, and CAMK that 
were significantly different for Case/control and Family/
control pairs, and Supplementary Figure 2 presenting 
additional genes of significance for Cancer/control pair. 
And, Table 6 presents significant hypo-methylated DMRs 
and associated genes that showed difference between 
Cancer versus control groups, with Figure 3 presenting 
the three most representative genes, SEPT9, SLC2A1/
GLUT1 and SLC2A3/GLUT3, that were significantly 
different for both Cancer/control and Family/control pairs, 
and Supplementary Figure 3 presenting additional genes 
of significance for Cancer/control pair.

Figure 2 displays the significant hyper-methylated 
DMRs with the specific genes. The data reflects an 

increase in the methylation levels of some DMRs 
incrementally from control, obese, and Family, to Cancer 
groups. Pair-wise tests presented significant (p < 0.05) 
hyper-methylated genes between Cancer/control and 
Family/control pairs, on GNAS at the promoter region, 
MSH2 at the Intron region, and CAMK2 at the CDS 
region (Figure 2). Additional genes with significant 
trends for group differences for hyper-methylaton 
included HK3, FCN1, and NOS3 at the CDS region; and, 
DNMT3A and MSH6 at the intron region (Supplementary 
Figure 2). Those results suggested common methylation 
alterations exist in CRC and their family members by 
sharing genetic heritage, household environment, and 
epigenetic changes.

Figure 3 presents the significant hypo-methylated 
DMRs with the specific genes. The data reflects a 
decrease in the methylation levels of some DMRs from 
control, obese, and Family to Cancer groups. Pair-wise 
tests presented significant (p < 0.05) hypo-methylated 

Table 4: Top 10 hypo-methylated DNA methylated regions based on 10% difference between Cancer and Control 
(-1000 ≤ distance to transcription start site [TSS] ≤ +1000 base-pair DNA)

Gene Regions DMR location Distance 
To TSS

Methylation Difference Gene Name or 
roleStart End % p q

SLC2A3 Intron 8,087,820 8,087,905 988 -61.18 1.06E-13 6.23E-12 Glucose 
transmembrane 
transporter activity

LOC338817 Promoter 11,700,194 11,700,609 -355 -55.46 1.36E-18 3.92E-16 N/A

MLH3 Promoter 75,518,893 75,518,943 -659 -51.32 2.22E-07 1.73E-06 DNA Mismatch 
Repair (MMR)

LRRC27 Promoter 134,144,308 134,144,429 951 -49.30 1.06E-08 1.32E-07 Leucine Rich 
Repeat Containing 
27

FANCG Promoter 35,080,807 35,080,913 -795 -48.79 2.24E-08 2.51E-07 DNA Double-
Strand Break 
Repair

RPSA Intron 39,450,361 39,450,501 481 -46.51 1.53E-07 1.27E-06 RNA binding, 
structural 
constituent of 
ribosome

SLC2A1 Promoter 43,425,368 43,425,715 -522 -44.71 8.39E-10 1.51E-08 Glucose 
transmembrane 
transporter activity

ZFP36 CDS 39,899,297 39,899,354 965 -43.30 2.97E-06 1.56E-05 DNA binding, RNA 
binding, Protein 
binding

HMHA1 Intron 1,077,542 1,077,680 911 -42.82 3.24E-12 1.23E-10 Minor 
histocompatibility 
protein HA-1

ARID5B Utr5 63,808,928 63,809,171 0 -42.54 6.81E-07 4.50E-06 FTO Obesity 
Variant Mechanism

Note: CDS: coding DNA sequence.
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genes between Cancer/control and Family/control pairs 
on SEPT9 at the intron region, SLC2A1/GLUT1 at the 
promoter region, and SLC2A3/GLUT3 at the intron region 
(Figure 3). Additional genes with significance or significant 
trends for Cancer/control group differences included FCN1 
and PEMT at the intron region (Supplementary Figure 3). 
Those results suggested common methylation alterations 
exist in CRC and their family members by sharing genetic 
heritage, household environment, and epigenetic changes. 
On the other hand, it also suggested that obesity might be 
associated with CRC as the methylation levels of some 
of these genes for the obese group are in the mid-range 
between the CRC and control groups (Figures 2 and 3, 
Supplementary Figures 2 and Supplementary Figure 3).

Five of these six significant genes shared by Cancer/
control and Family/control pairs presented in Figures 2 
and 3, in addition to other genes play significant roles in 
cancer development or tumorigenesis (e.g. MLH3, MSH2, 
MSH6, SEPT9, GNAS, SLC2A1/GLUT1 and SLC2A3/
GLUT) [20–22]. MSH2 and MSH6 are DNA mis-match 
repair (MMR) genes for family based hereditary CRC], 
Lynch Syndrome. Variations in those genes markedly 
increases the risk of developing Lynch Syndrome [20–22] 
(also named hereditary nonpolyposis colorectal cancer, 
HNPCC), which is an inherited disorder that increases the 
risk of many types of cancer including CRC. MLH3is also 
a MMR, which also plays an important role in HNPCC 
[23]. The role of SLC2A1/GLUT1 and SLC2A3/ GLUT3 

Table 5: Significant hyper-methylated genes based on 10% methylation difference between Cancer and Control 
(-1000 ≤ distance to transcription start site [TSS] ≤ +1000 base-pair DNA)

Gene Regions DMR location Distance 
To TSS

Methylation Difference Gene Role

Start End % p q

GNAS Promoter 57,464,802 57,465,121 624 28.79 3.48E-04 8.05E-04 GNAS mutation 
associated 
with colorectal 
tumorigenesis [30]

Promoter 57,425,903 57,426,055 0 26.79 1.59E-06 9.22E-06

DNMT3A Intron 25,551,093 25,551,226 365 23.78 8.39E-07 5.36E-06 Methylation 
pathway

MSH6 Intron 48,011,362 48,011,896 270 20.76 2.71E-03 4.28E-03 Lynch Syndrome, 
MMR

CAMK1 CDS 9,799,262 9,799,361 7,636 15.32 1.06E-04 3.03E-04 Calcium/
calmodulin-
dependent protein 
kinase type 1

MSH2 Intron 47,660,208 47,660,258 30,004 14.75 1.08E-04 3.07E-04 Lynch Syndrome, 
MMR

GNAS Intron 57,416,524 57,416,680 0 14.50 9.23E-04 1.79E-03 Associated 
with colorectal 
tumorigenesis

HK3 CDS 176,308,803 176,309,092 17,242 14.45 3.26E-05 1.16E-04 Glucose 
metabolism 
pathways

GNAS Promoter 57,426,743 57,427,047 -786 13.72 6.80E-03 9.05E-03 GNAS mutation 
associated with 
Cancer

FCN1 CDS 137,804,570 137,805,004 4,803 11.72 7.28E-05 2.23E-04 Associated with 
Diabetes

HK3 CDS 176,314,364 176,314,772 11,562 11.32 1.07E-02 1.31E-02 Glucose 
metabolism 
pathways

NOS3 CDS 150,710,282 150,710,719 10,868 10.69 2.45E-02 2.66E-02 Methylation, 
oxidative stress

Note: CDS: coding DNA sequence.
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has been widely studied in cancers [24–27]. Researchers 
summarized that GLUT1 was associated with poor 
prognosis for disease-free survival in rectal cancer and an 
indicator of aggressive clinical features in CRC through a 
meta-analysis [28]. SEPT9 has been reported as being a 
promising biomarker for early detection and screening of 
CRC [29, 30], which is also presented in our results using 
the blood samples. HK3, FCN1, CAMK1, GLUT1/SLC2A1 
and GLUT3/SLC2A3 are involved in glucose and insulin 
metabolism that played vital role in development of obesity 
and diabetes. FCN1gene is associated with an earlier onset 
of type 1 diabetes mellitus in children and adolescents 

[31]. PEMT, ALDH1L1, DNMT3A are critical genes in the 
methylation pathways. DNMT3A is also reported as one of 
the critical tumor suppressor genes, has crucial biological 
role in self-renewing cells, enabling their differentiation. Its 
dysregulation could result in a predisposition to cancer and 
other pathological consequences [32].

Gene ontology analysis

For gene ontology analysis, we used 15% 
differences of average methylation level as the criterion 
on the DMRs. For Cancer/control pair, from 3173 

Figure 2: Significant genes of hyper-methylation compared between groups (CDS: coding DNA sequence region).

Table 6: Significant Genes based on 10% differences of methylation level between Cancer and Control (hypo-
methylated genes)

Gene Regions DMR location Distance 
To TSS

Methylation Difference Gene Role

Start End % P q

SLC2A3 Intron 8,087,820 8,087,905 988 -61.18 1.06E-13 6.23E-12 Glucose 
transporter 
3 (GLUT3)

MLH3 Promoter 75,518,893 75,518,943 -659 -51.32 2.22E-07 1.73E-06 DNA 
mismatch 
repair genes

SLC2A1 Promoter 43,425,368 43,425,715 -522 -44.71 8.39E-10 1.51E-08 Glucose 
transporter 
1 (GLUT1)

FCN1 Intron 137,802,212 137,802,301 7,506 -28.36 6.39E-04 1.33E-03 Associated 
with 
Diabetes

SEPT9 Intron 75,449,408 75,450,396 0 -27.68 2.50E-09 3.82E-08 Tumor 
suppressor 
gene

PEMT Intron 17,410,253 17,410,397 -10,545 -23.01 9.47E-05 2.77E-04 Methylation 
pathway

ALDH1L1 Intron 125,832,461 125,832,876 9,980 -11.08 9.75E-04 1.86E-03 Methylation 
pathway
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DMRs (adjusted q < 0.05), we identified 1778 known 
genes. Those genes were uploaded onto the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) (https://david.ncifcrf.gov), National Institutes 
of Health [33–35], for Gene Ontology analysis to study 
whether some common functional trends in pathways, 
biological processes, cellular component and molecular 
functions were associated with those genes. Table 7 lists 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
PATHWAY and Gene Ontology (GO) categories from 
DAVID with both raw p value and Benjamini value to 
correct for false discovery rate (FDR), of less than 0.05.

For the KEGG Pathway analysis, five pathways 
survived FDR for multiple testing corrections, including 
Axon Guidance (hsa04360), Pathways in Cancer 
(hsa05200), Rap1 Signaling Pathway (hsa04015), Focal 
Adhesion (hsa04510), and Glutamatergic Synapse 
(hsa04724). It has been reported that Axon Guidance 
gene could turn off tumor suppressor gene in CRC which 
explains why this pathway survived in Cancer/control 
pair comparative analysis [36]. Pathways in Cancer, 
Rap1 Signaling Pathway, and Focal Adhesion were all 
reported to being involved in cancer development [37–39]. 
Researchers showed that Rap1 Signaling Pathway played 
an important role in regulating tumor cell invasion and 
metastasis [40]. Dysregulated Glutamatergic Signaling 
Pathways were found as being a player in brain tumor and 
melanoma [41]. Therefore, all five observed pathways are 
consistent with the cancer status when compared to the 
healthy non-obese control data.

We also observed 7 biological processes that 
exhibited differences between Cancer and control. Those 
process includes Hemophilic Cell Adhesion via Plasma 
Membrane Adhesion Molecules (GO: 0007156), Signal 
Transduction (GO: 0007165), Positive Regulation of 
GTPase Activity (GO: 0043547), Neuromuscular Process 
Controlling Balance (GO: 0050885), Cell Adhesion 
(GO: 0007155), Nervous System Development (GO: 
0007399), and Cell Migration (GO: 0016477). There was 
one cellular function and one molecular function survived 

FDR for multiple testing, named Plasma Membrane (GO: 
0005886) and Calcium Ion Binding (GO: 0005509).

For Family/Control pair, from 2233 DMRs 
(adjustedq < 0.05), we identified 1210 known genes. GO 
analysis was performed using those genes and DAVID 
database. However, only one molecular function showed 
significant difference between Family/control pair, which 
is Calmodulin Binding (GO: 0005516). Although Family/
control pair shared some significant DMRs overlapping 
with the DMRs for Cancer/control pair, no pathways 
and only one molecular function survived the FDR on 
gene ontology tests. This may explain why Cancer group 
developed CRC while Family group did not.

For obese/control pair, from the 968 DMRs 
(adjusted q < 0.05), we identified 617 known genes. GO 
analysis resulted only one significant biological process, 
one significant cellular component and one significant 
molecular function, named Homophilic Cell Adhesion via 
Plasma Membrane Adhesion Molecules (GO: 0007156), 
Plasma Membrane (GO: 0005886) and Calcium Ion 
Binding (GO: 0005509) respectively. All three categories 
showed up on Cancer/control pair comparative analysis, 
indicating that there might be some associations in the 
development of diseases for CRC and adiposity.

DISCUSSION

In this study, we determined the methylation status of 
approximately 25% of CpGs for the entire human genome, 
using RRBS of blood samples, for the CRC patients and 
their family members, with the obese and non-obese healthy 
controls from GEO database. These CpGs were highly 
enriched in CGI regions. Over 23,000 CGIs were examined 
in each sample from all four groups. To our knowledge, this 
is the first sequencing-based methylation study of the blood 
samples for CRC and their blood-related family members. 
We also included data from obese and non-obese healthy 
control participants, accessed from GEO public data to 
study the common and different epigenetic alterations 
in CRC and family compared to these controls. After 

Figure 3: Significant genes of hypo-methylation compared between groups.

https://david.ncifcrf.gov
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scanning the genome using 200 bp tiling windows, when 
10% of differential methylation level was used as criteria, 
7327 DMRs were identified between CRC and control pair, 
6072 between Family and control pair, and 2203 between 
obese and non-obese control pair. The decreased numbers 
of DMRs down the pairs of CRC, Family, obese groups 
paired with controls, depict the differences of association 

from CRC, to family members, and obese groups compared 
to the healthy non-obese group. The findings also suggested 
that adiposity may share similar disease development in 
biological process, cellular component, and molecular 
function, with CRC.

We identified 1778 known genes that were hyper- 
or hypo-methylated in CRC group when compared to the 

Table 7: Gene Ontology (GO) analysis based on 15% differences of methylation level between groups (significant 
according to Benjamin adjusted p)

Group/Term N Genes* p, Benjamini

Cancer/Control

Pathways

 hsa04360: Axon Guidance 27 9.59E-06,.00261

 hsa05200: Pathways in Cancer 53 3.21E-04,.0429

 hsa04015: Rap1 Signaling Pathway 33 4.20E-04,.0375

 hsa04510: Focal Adhesion 32 6.40E-04,.0428

 hsa04724: Glutamatergic Synapse 21 8.63E-04,.046

Biological Process

 GO:0007156~Homophilic Cell Adhesion via Plasma Membrane 
Adhesion Molecules

62 1.21E-27, 4.99E-24

 GO:0007165~Signal Transduction 138 3.71E-07, 7.65E-04

 GO:0043547~Positive Regulation of GTPase Activity 74 1.12E-05, .0153

 GO:0050885~Neuromuscular Process Controlling Balance 14 3.22E-05, .0326

 GO:0007155~Cell Adhesion 61 4.83E-05, .0391

 GO:0007399~Nervous System Development 43 5.17E-05, .035

 GO:0016477~Cell Migration 30 5.97E-05, .0346

Cellular Component

 GO:0005886~Plasma Membrane 397 4.88E-08, 3.30E-05

Molecular Function

 GO:0005509~Calcium Ion Binding 119 1.45E-15, 1.76E-12

Family/Control

Molecular Function

 GO:0005516~Calmodulin Binding 28 3.88E-06,.00392

Obesity/Control

Biological Process

 GO:0007156~Homophilic Cell Adhesion via Plasma Membrane 
Adhesion Molecules

32 1.04E-17, 2.30E-04

Cellular Component

 GO:0005886~Plasma Membrane 158 3.61E-06,.0014

Molecular Function

 GO:0005509~Calcium Ion Binding 51 3.60E-09, 2.29E-06

* Red fonts denote repeated components between the pairs of comparisons.



Oncotarget25567www.oncotarget.com

control. Among the top 10 hyper- or hypo-methylated 
genes from CRC/control pair, most of DMRs have been 
reported as being differently expressed in or associated 
with CRC tumor tissue. PCNXL3 was reported to be one of 
the top 20 genes with the highest correlations with colon 
adenocarcinoma [42], MIR4285 and MIR3648 were shown 
to be differentially expressed in colon adenomas [43, 44], 
and MiR1247 as a potential tumor suppressive gene [45]. 
Bhatlekar et al showed that overexpression of HOXA4 and 
HOXA9 contributes to self-renewal and overpopulation of 
stem cells in CRC [46]. HOXA4 has also been reported to 
be a potential tumor suppressive gene [47–49]. CLDN23 
expression had been shown to be increased in CRC 
[50] and patients with down-regulation of CLDN23 was 
reported to have shorter overall survival [51]. GNAS 
mutations had been identified in several tumors of the 
endocrine system [52]. SLC2A1 (GLUT1) and SLC2A3 
(GLUT3) genes were involved in glucose and insulin 
metabolism which played vital role in development of 
obesity, diabetes and CRC. MLH3 is a DNA MMR gene, 
which plays vital role in cancer development. FANCG is 
a DNA repair gene which is a candidate tumor suppressor 
gene. RPSA (also name as laminin receptor 1) transcript 
was shown to being higher in colon carcinoma tissue [53]. 
Therefore, those genes were involved in CRC and they 
may qualify to serve as candidate biomarkers for CRC 
diagnostic or may provide further understanding on CRC 
development.

Family members may share the genetic heritage 
and if lived in same household could share the habitat 
of similar dietary habits, lifestyles and the same 
environmental agents that could contribute to the same 
DNA methylation at some level. Therefore, we performed 
pair-wise comparisons of Cancer/control, Family/control, 
and obese/control with the methylation status among the 
four groups of Cancer, Family, obese, and control Five 
of six significant genes that played significant roles in 
cancer development or tumorigenesis, were shared by 
Cancer/control and Family/control pairs as presented in 
Figures 2 and 3. These genes included MSH2, SEPT9, 
GNAS, SLC2A1/GLUT1 and SLC2A3/GLUT [20–22], 
SLC2A1/GLUT1 and SLC2A3/ GLUT3. These genes 
were associated with poor prognosis for disease-free 
survival in rectal cancer [24–27], and aggressive CRC 
through a meta-analysis [28]. SEPT9 gene was reported 
as being a promising biomarker for early detection and 
screening of CRC [29, 30], which is also presented in 
our results using the blood samples. CAMK1, GLUT1/
SLC2A1 and GLUT3/SLC2A3 genes were involved in 
glucose and insulin metabolism that played vital role in 
development of obesity and diabetes [31].

We further performed GO analysis for both CRC 
and their family members in comparison to the non-obese 
healthy controls. However, only one molecular function 
showed significant difference between Family and control 
pair. Although Family/control pair shared some significant 

DMRs with Cancer/control pair, no pathways and only 
one molecular function survived the FDR statistical tests. 
This may explain the differences on the methylation 
status associated with cancer development and cancer 
progression.

For obese and control paired comparison, we 
presented one significant biological process, one 
significant cellular component and one significant 
molecular function, named Homophilic Cell Adhesion via 
Plasma Membrane Adhesion Molecules (GO: 0007156), 
Plasma Membrane (GO: 0005886) and Calcium Ion 
Binding (GO: 0005509) respectively. And these results 
are repeated components with the Cancer/control paired 
tests. These shared components demonstrated the potential 
associations in the development of diseases for CRC and 
adiposity.

With the conceptualization of family-based 
study design, in this preliminary report, we have 
demonstrated the shared genetic and environmental 
influences, and epigenetics of methylation changes 
on DMRs and associated genes between CRC and 
their blood related family members in their genomes. 
We have also demonstrated the similar methylation 
changes for the obese subjects in relation to the CRC 
cases. In addition to many tumor/cancer related genes, 
we further demonstrated the importance of glucose 
transporter genes in the methylation pathways for the 
possible mechanisms of adiposity in promoting cancer 
progression. Additionally, we demonstrated that the 
methylation changes can be investigated using the blood 
samples for the whole human genome as our findings 
using the blood samples validated findings of tissue-
based studies and extended findings from selected genes 
to the whole genome. Given that this is a first study for 
CRC cases involving their blood-related family members 
to examine shared genetic and environmental influences, 
and epigenetics within the family units, the findings 
from this demonstration/preliminary project with limited 
sample size needs to be further validated using larger 
samples. Our preliminary study provided evidences 
that these differentially methylated genes in the blood 
could potentially serve as candidate biomarkers for 
CRC diagnostic and may provide further understanding 
on CRC progression. Further studies are warranted to 
validate these methylation changes for diagnostic and 
prevention of CRC.

MATERIALS AND METHODS

RRBS library preparation

DNA was extracted from the whole blood of human 
subjects (CRC and their family members) using DNEasy 
blood and tissue kit (Qiagen, USA), fo1lowing the 
manufacturer’s protocol. Reduced representation bisulfite 
sequencing (RRBS) was performed on these DNA 
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samples to identify genomic DNA methylation regions. 
On the RRBS process: restriction enzyme was used to 
digest 5 ng genomic DNA in 200 μL reaction buffer at 
37°C overnight. The sticky ends produced by digestion 
were filled with CG nucleotides, and 3’A overhangs were 
added. Illumina sequencing adapters (Illumina, CA, USA) 
with 3’T overhangs, instead of standard adaptors contained 
in Illumina TruSeq library preparation kit, were ligated 
onto digested DNA following the manufacturer’s protocols 
(Illumina TruSeq library preparation kit). Size selection 
was performed manually on a 3% nusieve agarose gel 
(Alphatech, New Zealand) to capture insert sizes of 
150–250 bp based on previous studies [54]. Efficiency 
of adaptor ligation and size selection was determined by 
qualitative PCR. Bisulfite conversion of non-methylated 
cytosines was performed on 20 μL size-selected fragments 
using an EZ-DNA bisulfite conversion kit (Zymo, CA, 
USA) following the manufacturer’s instructions, except 
for a modification to bisulfite conversion conditions 
as recommended by Smith et al., 2009 [55]: 99°C for 5 
minutes, 60°C for 25 minutes, 99°C for 5 minutes, 60°C 
for 85 minutes, 99°C for 5 minutes, 60°C for 175 minutes, 
6 ×(95°C for 5 minutes, 60°C for 90 minutes). All PCR 
reactions for RRBS were purified using AMPure XP 
(Beckman Coulter, Brea, USA), analyzed on a bioanalyzer. 
The libraries were sequenced on two partial flow cells on 
an Illumina HiSeq 2000 sequencer and 50 bp paired-end 
reads.

RRBS data for 5 obese human subjects (GEO run 
number: SRR4048951, SRR4048952, SRR4048954, 
SRR4048955, and SRR4048957) and 5 non-obese 
healthy human subjects (GEO run number: SRR4048943, 
SRR4048945, SRR4048947, SRR4048948, and 
SRR4048949) were downloaded from GEO database (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85928). 
Demographic characteristics of gender were matched 
between groups of obese/non-obese controls, and with the 
CRC and Family groups to the extent possible; and oldest 
age from the available controls on the GEO database were 
chosen, for pair-wise comparison with CRC cases and family 
members for further DMR analysis.

Bioinformatics analysis

The raw sequencing reads were cleaned using 
FASTQC software (Babraham Institute, Babraham, 
Cambridgeshire, United Kingdom) prior to alignment. 
Adapter and low-quality reads with a Phred score 
value of 20 or less were trimmed with Trim galore, a 
wrapper script using FASTQC and Cutadapt software. 
The FastQC analysis was then conducted to ensure that 
quality measures were met in the remaining reads after 
trimming. The remaining reads were aligned to the hg19 
human reference genome by using Bismark with Bowtie 2 
software (Babraham Institute, Babraham, Cambridgeshire, 
United Kingdom), and BAM file was produced. To 

increase the reliability of the alignments, the average 
alignment mapping quality (MAPQ) of the BAM file from 
Bismark was rechecked using SAMtools software [56]. 
All remaining samples had a MAPQ score greater than 
38, indicating the mismatching possibility being small, p 
< 0.00016. Samtools was used to get mpileup, and PERL 
scripts were used to determine CpG methylation and non-
CpG methylation to estimate the bisulfite conversion 
efficiency. All methylation information was extracted by 
Bowtie and transferred to a txt file that could be further 
analyzed and summarized by R program with Methylkit 
package [57].

Detection of DMRs

To determine differences in methylation between 
groups, the aligned extracted data from above were 
imported into the free open source R package. Percentage 
of methylation difference per base were calculated using 
methylKit [57] and DMCs were identified with a >15% 
methylation difference and an adjusted p-value <0.05. 
eDMR (extended methylKit) were used to identified DMR 
with at least one DMC, at least three CpGs, a > 10% on 
mean methylation difference, and an adjusted p-value < 
0.05. The 200 bp non-overlapping windows was used to 
identify DMRs. The windows containing fewer than 5 
CpGs were filtered out of the further analysis. The DMRs 
were annotated using the UCSC RefSeq tracks.

Gene ontology and pathways analysis

Annotated gene lists were submitted to the David 
functional annotation database. Significant gene ontology 
and biological pathways were selected based on Benjamin 
adjusted p (Benjamin p <0.05). Student’s t-test was used 
to examine whether methylation levels differed between 
one of the three groups and the healthy non-obese control 
group. To correct for multiple testing, the p values were 
checked with FDR and adjusted p values.
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